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Formation and propagation of strong shock waves, which are adequately described using

the Euler equations, occur in many applications in several areas of high pressure science

and technology. Applications to real problems need numerical methods because of the

highly non-linear nature of Euler equations. A common technique used for solution is the

finite-difference method, which requires the addition of certain amount of artificial vis-

cous pressure to materiel pressure. This is to smooth out sharp discontinuities representing

shocks. The flux-corrected transport algorithm treats the Euler equations as a set of three

conservation equations; it generates positive, monotone and stable solutions, and does not

need artificial viscous pressure. This method provides accurate solutions to several prob-

lems in fluid flow, using either the Lagrangian or Eulerian descriptions. The aim of the

present chapter is to discuss this method and present simulation results of several strong

shock problems. These include some benchmark problems as well as impact generated

or explosive driven shock propagation problems. An accurate equation of state model for

metals is used with the FCT algorithm to simulate experimental applications.
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I. INTRODUCTION

Euler equations express conservation laws of mass, momentum and energy in space and time1.

In fact, these equations provide extensions of newton’s laws to continuous medium. Basically,

these are three coupled non-linear partial differential equations for the fluid density, velocity field

and total energy field (kinetic energy and internal energy). Euler equations find applications in

multidisciplinary fields of science and technology, particularly involving high energy density sys-

tems, which deal with energy densities about 105 J per gram, or equivalently about 100 GPa of

pressure. These systems include deep interiors of giant planets, hot and dense plasma in stellar

interiors, the core of nuclear weapons, etc., to name a few. An important topic of significant cur-

rent investigations is the field of thermonuclear fusion systems - particularly employing inertial

confinement concepts - studied in different laboratories world wide2. In all these systems, viscous

forces and energy transfer by thermal conduction and convection processes are negligibly small.

Euler equations, which describe inviscid fluid dynamics, adequately model such systems, and the

more general set of Navier-Stokes equations are unnecessary1.

Euler equations, being highly non-linear partial differential equations, require numerical methods

of solution even for ideal problems. However, it is easy to obtain wave equations for sound propa-

gation when one considers small perturbations around spatially uniform conditions3. This chapter

is concerned with a specific numerical method and applications for cases of large perturbations,

which lead to generation and propagation of shock waves. Shock propagation induces hydrody-

namic motions in the medium, which in turn leads to space-time variation of the fluid variables

such as density, pressure, internal energy, fluid velocity etc. Due to the omission of viscosity and

heat transfer, shocks occur as discontinuities in the fluid variables, and these propagate with char-

acteristic speeds called the shock velocity. All these aspects of fluid flow are of great importance

in the high energy density systems mentioned earlier. Experimental techniques in shock wave

physics are well developed for measuring pressure-time profiles, fluid velocity fields, shock veloc-

ity fields, free-surface velocity-time profiles, etc4.

Several numerical methods based on the finite difference approximations5 have been designed to

solve Euler equations. Almost all, except those employing implicit methods, use a marching tech-

nique to advance in the time domain. The state variables are updated in each time slice over all

spatial meshes using the numerical algorithm. To smooth out the discontinuous shock within the

numerical treatment, certain amount of artificial viscosity is added to the discrete equations6. This
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is necessary because finite difference approximations to spatial and temporal derivatives break-

down whenever steep gradients are present in the solutions. Severe rounding-off of shock fronts

is an unavoidable feature of such methods. Furthermore, they also suffer from problems related to

monotone and positive properties of the fluid variables. Some of these aspects will be discussed

later.

Euler equations have four dependent variables - mass density, fluid velocity, total energy and

pressure. Therefore, to close the system of equations it is necessary to add an equation of state

(EOS) of the material, which provides a relation - sometimes implicitly - between pressure, den-

sity and internal energy. While the numerical algorithm is used to update the spatial profiles of

fluid variables, the EOS provides the pressure profile. EOS is determined by employing statistical

mechanics methods and it must account for different states of the material that will be spanned

during shock propagation. When the typical time scale of fluid flow is much larger than relaxation

time to attain local thermodynamic equilibrium, EOS derived from statistical mechanics are use-

ful. One approach is to generate tables of internal energy and pressure, over a fine grid of density

and temperature, and integrate these with numerical algorithms.

One of the aims in this chapter is to discuss the flux-corrected transport (FCT) algorithm7 and ap-

ply it to obtain solutions to some strong shock problems using Euler equations. The flux-corrected

transport methodology is now well developed8, and have already been applied to solve multi-

dimensional hyperbolic transport equations9. An EOS model, applicable to compressed as well as

expanded states of metals, that can be easily integrated with the method, is also discussed. Specif-

ically, we discuss few problems in strong shock propagation in condensed media, which consist

of benchmark problems as well as experimental cases. The FCT algorithm has several desirable

features: second order accuracy in approximating time and space derivatives, minimal amount

of residual diffusion, positive property of density fields and their monotonic variation, stability

against error accumulation, etc. It is known to be very useful to resolve steep gradients occurring

in fluid flow problems10. These are important features to be desired when numerical solutions are

compared to analytical or experimental results. An added advantage of the method is that it does

not need addition of artificial viscous pressure6, which usually adds nonphysical fluctuations in

profiles and smears steep gradients occurring in shock fronts.

Euler equations are described in Section II. The integral form of conservation laws, the EOS men-

tioned above and a brief outline of general aspects of numerical schemes are also included. The

FCT algorithm is discussed in some detail in section III. Specific applications and results are cov-
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ered and discussed in Section IV. Finally, a summary and conclusions are given in section V.

II. EULER EQUATIONS

As mentioned in the previous section, the Euler equations describing conservation laws of mass

momentum and energy, are first order non-linear hyperbolic partial differential equations. These,

expressed in three-dimensional space and time in a fixed (or Eulerian ) reference frame, are given

by1,3:

∂ρ

∂ t
+~∇ · (ρ ~u) = 0,

∂ (ρuk)

∂ t
+~∇ · (ρuk ~u) =−∇kP, k = 1,2,3,

∂ (ρEt)

∂ t
+~∇ · (ρEt ~u) =−~∇ · (P~u). (1)

The space-time field variables in these equations ( ρ,~u,P and Et ) are, respectively, mass density,

fluid velocity, material pressure and total specific energy of the substance. The subscript k used for

velocity field ~u denotes its kth Cartesian component. Total specific energy is the sum of specific

internal energy (E) and specific kinetic energy, that is, Et = E + 0.5 ~u ·~u. The divergence terms

on the left hand side in these equations account for net flow of the field variables out of a volume

element, while the terms on the right hand side represent the driving sources. There are three

equations but four unknowns. So the set is closed by specifying an EOS of the form, P = P(ρ,E),

which is specified externally.

All the three equations state conservation laws of a field G in a fixed volume element: [rate of

change of G + rate of outward flow of G = rate of source]. So these can be expressed in concise

form as
∂G
∂ t

+~∇ · (G~u)+Sin−Q = 0, (2)

where G stands for ρ , ρuk or ρEt , and Sin denotes internal sources like ∇kP in the momentum

equations and ~∇ · (P~u) in the energy equation. Finally, Q represents rate of external source, if

any. There is an alternate way of expressing the conservation laws using a Lagrangian reference

frame. Here the evolution of the field variables is followed in a volume element as it moves throw

the fluid with the local fluid velocity. The volume element may change size (due to compression

or expansion) and shape (because of space dependent velocity), however, the mass of the fluid

within the element will remain unchanged. The Lagrangian conservation equation is given by:
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dG/dt +G ~∇ ·~u+ Sin−Q = 0. This equation follows on expressing the convective (or material)

derivative as the total derivative, that is, dG/dt = ∂G/∂ t +~u ·~∇G. It is easy to transform the

conservation equations from one scheme to the other using this definition.

For developing numerical methods, it is advantageous to express Euler equations in integral form,

over a volume V bounded by surface ∂V , as:
∫
V ∂G/∂ t dV +

∫
∂V G~u ·d~A+

∫
V (Sin−Q) dV = 0.

If the reference frame moves with local velocity ~ug, then the equation of motion for a volume

element can be written as: ∂V/∂ t =~u g ·d~A. On multiplying this equation with G, integrating over

V and adding to the integral form Euler equation yields the general equation:

∂

∂ t

∫
V (t)

G dV +
∫

∂V (t)

G (~u−~u g) ·d~A +
∫

V (t)

(Sin−Q) dV = 0, (3)

It is clear that in the Lagrangian scheme, as ~u = ~u g and so the flux through the surface element

∂V (t) is zero, only the sources contribute to total change in G. Integration of Eq.(3) over a time

step makes it convenient to derive discrete form of equations as will be done later in the section

on FCT algorithm.

A. Equation of state

As pointed above, EOS of materials is an inevitable ingredient in applications of Euler equa-

tions because it is needed to close the set of equations. In fact, EOS brings in the thermodynamic

characteristics of the medium in simulating fluid flow. Of course, EOS is important in its own

right in several fields of solid state science like geophysics, study of planetary and stellar struc-

tures, analysis of fast reactor accidental scenarios, analysis of nuclear weapon effects, etc. A

complete specification of an EOS is effected by providing pressure and specific internal energy

as functions of density (ρ) and temperature (T )11. Basically, there are three components in these

functions, which account for (i) the zero-temperature isotherm, (ii) thermal ionic effects and (iii)

thermal electronic effects. The effects of interaction between ionic and electronic motion are also

present, however, these contribute only a few percent to pressure and energy and so may be ne-

glected in modeling high energy density systems. Pressure and specific internal energy are, then,

expressed as11 :

P(ρ,T ) = Pc(ρ)+Pti(ρ,T )+Pte(ρ,T ) (4)

Here the terms represent, respectively, the three components mentioned above; the subscripts c,

ti and te denote ’zero temperature’, ’thermal-ion’ and ’thermal-electron’ components. Accurate
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representations of Pc for metals and compounds are available based on DFT computations. De-

tails of ionic motion, starting from the Debye’s model at low temperatures to melting transition

and, finally, ideal gas behavior, are incorporated in Pti. Electron EOS models usually make use of

statistical approaches as in the Thomas-Fermi model. Exactly similar relation involving the three

components also holds for specific internal energy E(ρ,T ). This form of EOS has been discussed

in detail and validated against experimental data on shock-Hugoniot, critical point parameters,

liquid-vapor phase diagram and isobaric expansion11. Temperature appearing in these expressions

corresponds to thermodynamic equilibrium condition in the material, and can be eliminated using

the expression for specific internal energy, thereby obtaining the required form P = P(ρ,E). The

model can also be employed to prepare extended tables for integrating with hydrodynamics calcu-

lations.

The more commom Mie-Grüneisen EOS directly relates pressure to internal energy and density

using the Grüneisen parameter12. Starting with the thermodynamic definitions of this parameter

and constant-volume specific heat, a generalized Mie-Grüneisen EOS can be derived as13

P = Pc +
1
V

Γ̄(V,T )(E−Ec)+
1
V
[Γe(V )−Γi(V )] (ziEte− zeEti) (5)

Here thermal electron effects are represented explicitly with separate Grüneisen parameters (Γi

and Γe), a weighted average Γ̄(V,T ), and constant-volume specific heats (CVi and CVe) for ions

and electrons13. This method allows smooth switch over to electron part at high temperature.

Enthalpy-based EOS treats pressure as independent variable in lieu of density14, and is more

appropriate in modeling shock propagation in porous materials as well as binary and multi-

component mixtures.

B. Aspects of numerical schemes

Before focusing on the FCT algorithm, the main aspects of numerical methods for hyperbolic

conservation laws are considered in this section15. These can be brought out by considering a

scalar hyperbolic conservation equation of the form: ∂q/∂ t + ∂ f (q)/∂x = 0 for the field q(x, t)

in one space dimension. Here the non-linear function f (q) specifies the flux of the quantity rep-

resented by q. The objective of the method is to integrate the conservation equation over the

spatial domain of interest [a,b] and a certain time domain [0,T ], taking in to account the bound-

ary conditions on q(x, t) at the end points and the the initial condition q(x,0) at time t = 0. The
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interval [a,b] is divided in to N sub-intervals of width h = (b− a)/N, the ith interval, ( denoted

by Ii) being bounded by xi−1/2 and xi+1/2. So the end points of the domain are x1/2 = a and

xN+1/2 = b, respectively, where the boundary conditions are specified. Integration of the equation

over [xi−1/2, xi+1/2] and the time interval δ = tn− tn−1 provides the discrete form of conservation

law: q̄n+1
i = q̄n

i − (δ/h) [ f̄ n
i+1/2− f̄ n

i−1/2], where q̄n+1
i = (1/h)

∫
Ii

q(x, tn+1)dx is the average of q

in Ii at tn+1 and f̄ n
i+1/2 = (1/δ )

∫ tn+1
tn f (xi+1/2, t)dt is the time-average of the flux over the nth time

interval δ = tn+1− tn at location xi+1/2. Addition of the contributions in all spatial intervals shows

that integral of q over [a,b] at successive time-points differ only by the net inward flow at the end

points during that time interval, thereby confirming that the discrete version indeed conserves q.

The algorithms obtained above for cell average quantities like q̄n+1
i belong to the class of finite

volume methods. However, it is also possible to derive the same formula by using finite differ-

ence methods by associating q̄n+1
i to the value of q at the mesh-center. But it is clear that the

former nomenclature is more appropriate for discrete conservation laws.

For practical use of the discrete conservation law, it is necessary to express f̄ n
i+1/2 in terms of the

cell average q-values at tn and tn+1. As this can not be done exactly, various numerical methods

have been proposed to effect this relation approximately. Hyperbolic equations propagate infor-

mation at finite speeds, and so it is intuitively reasonable to assume that f̄ n
i+1/2 can be expressed in

terms of q̄n
i and q̄n

i+1, which correspond to the cells on both sides of the interface xi+1/2. So defining

a numerical flux function, Fn
i+1/2(q̄

n
i , q̄

n
i+1) = (1/δ )

∫ tn+1
tn f (xi+1/2, t)dt , the discrete conservation

law can be rewritten as: qn+1
i = qn

i −(δ/h)[F(qn
i ,q

n
i+1)−F(qn

i−1,q
n
i )]. ( From now on, the average

symbol on q will be dropped to simplify notations. The indices on F are also dropped, thereby im-

plying that the flux function is the same for all spatial and time intervals ). Methods which provide

qn+1
i ( at tn+1) explicitly in terms of qn

i ( at tn) are called explicit methods . The specific example:

F(qn
i ,q

n
i+1) = (1/2)[ f (qn

i )+ f (qn
i+1)]− (1/2)(qn

i+1− qn
i ) generates the Lax-Friedrichs method

which provides the recursive formula: qn+1
i = (1/2)(qn

i+1 + qn
i−1)− (δ/2h)[ f (qn

i+1)− f (qn
i−1)].

Note that qn+1
i is coupled to itself and two neighbors when expressed in conservation form. An-

other example is the upwind method, which corresponds to the numerical flux function: F(v,w)=

f (v) if f ′(v) > 0 but F(v,w) = f (w) if f ′(v) < 0. The resulting recursive formula can be ex-

pressed as: qn+1
i = qn

i − (δ/h)[ f (qn
i )− f (qn

i−1)] when f ′(qn
i ) > 0, and a similar formula for the

case f ′(qn
i )< 0. This also is a three-point difference formula. An appealing derivation of the up-

wind algorithm follows from the application of the celebrated Godunov’s method. The idea here

is to construct the numerical flux function using the solutions to a series of Riemann problems,
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which is about solving the conservation equation with specified q-values (as initial condition) on

two sides of an interface16.

It is possible to choose the numerical flux function so that it also depends on time tn+1. A possi-

ble choice is: δ−1 ∫ tn+1
tn f (xi+1/2, t)dt = (1− ε)F(qn

i ,q
n
i+1)+ εF(qn+1

i ,qn+1
i+1 ), where 0 ≤ ε ≤ 1 is

an interpolation parameter. While the choice ε = 0 gives the explicit method, ε = 1/2 provides

second order accuracy in approximating the time derivative. However, qn+1
i is to be determined by

solving a non-linear algebraic equation for each i and time step. Such methods are called implicit

methods, which could be computationally more expensive. Generally, hyperbolic conservation

laws are solved using explicit methods.

The accuracy of discrete time variable can also be improved by dividing the time step into two

parts. Then, in the first half, the q-values are updated at cell edges, for example, by employing

the recursion: q∗ n+1/2
i+1/2 = (1/2)[qn

i+1 + qn
i ]− (δ/2h)[ f (qn

i+1)− f (qn
i )]. Note that the first term is

an approximation to qn
i+1/2. As the quantity q∗ n+1/2

i+1/2 corresponds to cell edge, the numerical flux

is directly given in terms of the exact flux f (q) in the conservation law. In the second half, the

intermediate q-values are used in the original recursive formula: qn+1
i = qn

i − (δ/h)[ f (q∗ n+1/2
i+1/2 )−

f (q∗ n+1/2
i−1/2 )]. This algorithm, called Ritchmeyer-Lax-Wendoff method, has second order accu-

racy with respect to time step.

A numerical method is said to be convergent if the difference between the exact and approximate

solutions vanish when mesh width h and time step δ approach zero. The method is said to be kth

order accurate if the error in the approximate solution is proportional to O(hk + δ k). Generally

it is difficult to prove convergence of a method as the number of equations to be solved tend to

infinity as (h,δ )→ 0. A less stringent concept, called consistency, is based on local truncation

error. For the cases of smooth solutions, it may be easy to establish, via Taylor’s series expansion,

that the local truncation error is O(hk + δ k) and so it vanishes (h,δ )→ 0. Such a method is said

to be locally kth order accurate and consistent.

Another important concept in numerical computations is that of stability. As the solution is ad-

vanced to larger time, it is necessary that the inevitable errors originating from local truncation

as well as numerical round off do not accumulate and spoil the numerical solution. The method

is said to be stable if this requirement is realized. Even if the method is locally consistent, the

generated solution would be useless if it is not stable. Analysis of the numerical algorithms

provides conditions on h and δ for ensuring stability. For hyperbolic conservation laws, this

is called the Courant-Friedrichs-Lewy (CFL) condition which is expressed as: un
max(δ/h) ≤ 1.
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Here un
max = max1≤i≤n | f ′(qn

i )| is the maximum speed of propagation of information in the in-

terval [tn, tn+1]. As unstable methods are useless, this condition is of fundamental importance in

numerical computations. Physically it implies that the information contained in a mesh should

not propagate outside during a time step. It can also be derived using the concept of domain

of influence16. As information propagates at finite speed, the initial distribution q(x,0) within a

domain D , of the region [a,b], alone contributes to the solution qn+1
i during [0, tn+1]. Note that

D ≡ D(xi, tn+1) as size of this domain depends on xi and tn+1. An algorithm to compute qn+1
i

should at least cover this domain of influence; otherwise the computed qn+1
i will be devoid of the

salient features of q(x,0) in D(xi, tn+1). This basic principle limits the allowed range of δ that can

be used for a given mesh width h. Then the CFL condition follows because a smaller value of δ

increases D(xi, tn+1).

III. FCT NUMERICAL ALGORITHM

Physical quantities like mass density are positive and the hyperbolic conservation laws pre-

serve this property in the course of time. Another property preserved is the monotonic variation,

which is related to the unchanging increase (or decrease) of the quantity in a certain spatial do-

main. These properties are more important in situations involving strong gradients in the flow like

shocks or contact discontinuities. Preserving the monotonic feature avoids creation of maximum

or minimum in spatial profiles due to truncation of convective derivative. It is easily verified that

the upwind method maintains these properties, however, it has only first order accuracy in space

derivative. So higher order methods are essential for improving accuracy, but Gudonov’s theorem

says that linear monotone numerical methods can at most be first-order accurate. This implies

that higher order schemes have to be inherently non-linear. The FCT algorithm, developed by

Boris, Book and co-workers10, is one of such non-linear schemes, which is discussed briefly be-

low. This algorithm has three features: a convective stage, a diffusive stage, and a flux-corrected

anti-diffusive stage. While the first uses a lower order scheme, the unknowns are updated using a

higher order scheme in the second stage. Certain amount of numerical diffusion is inevitable in

these stages for ensuring numerical stability and positivity. In the final stage the algorithm adds

anti-diffusion fluxes for reducing the smearing effects of numerical diffusion. The important as-

pect of the method is that the anti-diffusion fluxes are corrected such that no new maximum or

minimum in the variables are generated. Advancing in time is improved using a two-step scheme
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wherein time-centered source terms are generated before completing the full time step. FCT algo-

rithm is coded as FORTRAN subroutines10 which can be easily used with a driver program and an

EOS package. It also has the flexibility that either the fixed Eulerian frame or moving Lagrangian

frame can be used in the simulation.

A. Features of FCT algorithm

To discuss the various features of the algorithm17, it is enough to consider a planar conservation

equation: ∂q/∂ t + ∂ (u q)/∂x = 0, where u(x, t) denotes a specified velocity field. This equation

belongs to the class of scalar conservation laws with f (q) = u q. The discrete version of the

solution can be represented as18

qn+1
i = qn

i −
δ

h
[FT n

i+1/2−FT n
i−1/2]− [FD n

i+1/2−FD n
i−1/2]− [FC n

C i+1/2−FC n
i−1/2]. (6)

Average symbols on q and F are not shown even though they represent, respectively, spatial and

temporal averages. The numerical fluxes FT , FD and FC correspond to the convective (trans-

port), numerical diffusion and corrected anti-diffusion contributions. Further, it is assumed that

the diffusive and anti-diffusive fluxes have dimensions same as that of q, and hence the diffu-

sion coefficients appearing in them are non-dimensional. A simple choice for convective part

is FT n
i+1/2 = un

i+1/2(q
n
i+1 + qn

i )/2, which is just the flux at xi+1/2 using the average value for the

interface q. The diffusive contribution may be taken as the first order derivative of Fick’s law:

FD n
i+1/2 =−νn

i+1/2(q
n
i+1−qn

i ) where νn
i+1/2 is a dimensionless diffusion coefficient. The intermedi-

ate approximation contributed by the transport flux is:

q t n
i =

1
2

ε
n
i−1/2qn

i−1 +[1− 1
2

ε
n
i+1/2 +

1
2

ε
n
i−1/2]q

n
i −

1
2

ε
n
i+1/2qn

i+1, (7)

where εn
i+1/2 = (δ/h)un

i+1/2 is a dimensionless parameter. This part is written out explicitly for

future reference. Now, addition of the diffusion component generates the next approximation:

q∗ n
i = [νn

i−1/2+
1
2

ε
n
i−1/2]q

n
i−1+[1− 1

2
ε

n
i+1/2+

1
2

ε
n
i−1/2−ν

n
i+1/2−ν

n
i−1/2]q

n
i +[νn

i+1/2−
1
2

ε
n
i+1/2]q

n
i+1.

(8)

In fact, if νn
i+1/2 = 1/2 for all i, this expression looks similar to that obtained in the Lax-Friedrichs

method for the flux f (q) = u q. This three point formula, which is rewritten more compactly

as: q∗ n
i = An

i,i−1qn
i−1 +An

i,iq
n
i +An

i,i+1qn
i+1, generally occurs in most of the methods. The column

sum: An
i−1,i +An

i,i +An
i+1,i for each i, must be unity for the method to be conservative. Further,
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the conditions: An
i,i−1 ≥ 0 , An

i,i ≥ 0 and An
i,i+1 ≥ 0 for each i, are sufficient for the algorithm to

be positive. It is important to note that εn
i±1/2 can assume positive or negative values depending

on the sign of the velocity field u. Therefore, ±εn
i±1/2 is to be replaced by −|εn

i±1/2| before ob-

taining the following bounds. Then, the first and last inequalities demand the sufficient condition:

(1/2)|εn
i±1/2| ≤ νn

i±1/2. Next, replacing |εn
i±1/2| with its minimum value zero in the second in-

equality gives the condition: νn
i±1/2 ≤ 1/2. Similarly, replacing νn

i±1/2 with its minimum value

(1/2)|εn
i±1/2| in the same inequality yields the limit: |εn

i±1/2| ≤ 1/2. It is easily found that these

inequities are satisfied within a triangle enclosed by the lines: ν = ε/2, ν = (1− ε)/2 and ε = 0

in the ν− ε plane. These inequalities bring out several important conclusions:

1. Non-zero values of νn
i±1/2 are necessary for ensuring positivity, and so numerical diffusion

is inevitable in methods preserving this property. Maximum amount of numerical diffusion

occurs when νn
i±1/2 = 1/2 as in Lax-Friedrichs method. Minimum amount corresponding

to νn
i±1/2 = (1/2)|εn

i±1/2| arises in the spatially first order upwind method.

2. The condition on time step imposed via |εn
i±1/2| ≤ 1/2 for positivity is twice stringent than

the CFL-stability condition, namely, |εn
i±1/2| ≤ 1.

3. Linear stability analysis (of Fourier modes) for constant ε and ν17 show that the three point

scheme is stable when |ε| ≤ 1 (CFL condition) and also when ε2/2 < ν . Thus the allowed

ranges of parameters: ε2/2≤ |ε|/2≤ ν ≤ 1/2 guarantee stability and positivity.

4. One way to reduce numerical diffusion is to use ν ∼ ε2/2 away from discontinuities, where

positivity is not an issue, and ν ∼ ε/2 around strong gradients. Such a scheme is inherently

non-linear as its depends on the spatial profile of q.

5. To reduce numerical diffusion further, however, with out destroying monotone property, a

corrected anti-diffusion contribution is added to Eq.(6), which is discussed next.

The anti-diffusion flux is obtained using intermediate quantities q t n
i+1, and may be approximated

with anti-Fick’s law, viz., FA n
i+1/2 =+µn

i+1/2(q
t n
i+1−q t n

i ). Note the difference in sign with respect

to Fick’s law; also that the µ’s are positive anti-diffusion coefficients. This choice gives rise to

flux in the positive x-direction if q t n
i+1 > q t n

i , which is just the opposite of Fick’s law. The largest

value of µn
i+1/2, which would not affect stability and positivity, is µn

i+1/2 = νn
i+1/2− (1/2)|εn

i+1/2|.
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This is simply the excess value of νn
i+1/2 that will not hamper positivity. Note that qn+1

i+1 → qn
i+1

in regions where the flow velocity (and hence |εn
i±1/2 ) is negligible. By choosing the µ ′s and ν ′s

same, the above definition of anti-diffusive flux ensures this limit in such regions.

To maintain monotonic property, addition of anti-diffusion contribution should not introduce ad-

ditional maximum and minimum in the spatial profile . For example, if q∗ n
i−1 < q∗ n

i > q∗ n
i+1, that is,

there is a maximum at i, anti-diffusion will increase q∗ n
i further. Similarly, if q∗ n

i−1 > q∗ n
i < q∗ n

i+1,

so that there exists a minimum at i, anti-diffusion will reduce q∗ n
i and can make it even negative.

To avoid these problem, FA n
i+1/2 is corrected to obtain FC n

i+1/2 which appear in Eq.(6). Thus, the final

recursive formula is: qn+1
i = q∗ n

i − [FC n
i+1/2−FC n

i−1/2], where the corrected flux is given by17

FC n
i+1/2 = S×max

[
0, min

(
S× (q∗ n

i −q∗ n
i−1), |FC n

i+1/2|, S× (q∗ n
i+2−q∗ n

i+1)
)]
≥ 0 , (9)

where S = sign(q∗ n
i+1− q∗ n

i ). Therefore, S = 1 or −1, depending on q∗ n
i+1 ≥ q∗ n

i or q∗ n
i+1 < q∗ n

i ,

respectively. To understand this formula, take the case q∗ n
i+1 > q∗ n

i so that S = 1. Then there are

four possibilities:

1. q∗ n
i−1 < q∗ n

i < q∗ n
i+1 < q∗ n

i+2 ⇐⇒ implies monotonic increase in q⇐⇒ so decrease q∗ n
i with

out changing inequalities⇐⇒ now, the ’min’ operation in the above equation gives positive

number⇐⇒ consequently Fn
C i+1/2 > 0.

2. q∗ n
i−1 < q∗ n

i < q∗ n
i+1 > q∗ n

i+2 ⇐⇒ implies a maximum q∗ n
i+1 ⇐⇒ so no possibility of changing

q∗ n
i ⇐⇒ the ’min’ operation now gives zero⇐⇒ consequently Fn

C i+1/2 = 0.

3. q∗ n
i−1 > q∗ n

i < q∗ n
i+1 < q∗ n

i+2 ⇐⇒ implies a minimum q∗ n
i ⇐⇒ so no possibility of changing

q∗ n
i ⇐⇒ the ’min’ operation now gives zero⇐⇒ consequently Fn

C i+1/2 = 0.

4. q∗ n
i−1 > q∗ n

i < q∗ n
i+1 > q∗ n

i+2 ⇐⇒ implies a minimum q∗ n
i and maximum q∗ n

i+1 ⇐⇒ so no

possibility of changing q∗ n
i ⇐⇒ the ’min’ operation now gives zero⇐⇒ so Fn

C i+1/2 = 0.

Other cases can be analyzed in a similar manner. Note that the correction algorithm does not affect

existing maxima and minima. Other more sophisticated algorithms for correcting the fluxes are

also developed20.

Even though the FCT algorithm is explained above with reference to a specific method, it is quite

general17 and the steps involved can be summarized as follows: (i) update the cell average qn
i+1

using a method (which involves convective and diffusive transport effects) that preserves positive
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property, (ii) define the bare anti-diffusive cell boundary fluxes using the intermediate (transport)

cell average values, (iii) define corrected anti-diffusive cell boundary fluxes that ensure monotonic

property of the solution, and (iv) update all the cell average solutions employing the corrected

anti-diffusive fluxes.

To complete the specification of the algorithm, the diffusion coefficient (νn
i±1/2) and anti-diffusion

coefficient (µn
i±1/2) are to be specified. This is done by Fourier analysis of the algorithm for the

constant velocity problem18,19. Marching through a time step introduces errors in the amplitude

as well as phase of a Fourier mode. The choices νn
i±1/2 = (1/6)+ (1/3)(εn

i±1/2)
2 and µn

i±1/2 =

(1/6)− (1/6)(εn
i±1/2)

2 minimize these errors to fourth order in relative wave number.

Before concluding this discussion, it is necessary to mention a more general approach to designing

FCT algorithms20. In regions where flow variables vary smoothly, it is natural to use a high order

algorithm for the flux Fh[qn] to compute qn+1. Positive and monotonic properties of solutions are

not issues here. However, this would generate spurious oscillations and even negative solutions

in regions of strong gradients like shocks. So one is constrained to use a lower order algorithm

F l[qn], which ensures the said properties, in this region of flow. The general approach to FCT

defines the anti-diffusive flux as the difference between these two algorithms, that is, Fad[qn] =

Fh[qn]−F l[qn]. Using its corrected version Fadc[qn], the final update qn+1 is obtained with the

flux F l[qn]+Fadc[qn], so that both types of regions are adequately attended to.

B. Euler equations in one-dimension

For the cases of all one-dimensional geometries (planar, cylindrical and spherical) the integral

form of general conservation law in Eq.(3) can be written as:

∂

∂ t

∫
V (t)

G dV +
∫

∂V (t)

G (u−u g) ·d~A +
∫

V (t)

[ 1
rn−1

∂

∂ r
(rn−1B)−C

∂D
∂ r

]
dV −

∫
V (t)

Q dV = 0. (10)

The spatial coordinate is r, and u and ug represent the fluid velocity and grid velocity along the

r-coordinate. Volume and surface elements in one-dimension are: dV = 2n−1πrn−1dr and d|~A|=

2n−1πrn−1, respectively. The index n takes values 1, 2 and 3 in planar, cylindrical, and spherical

geometry, respectively. The internal source term Sin is explicitly written in terms of coefficient

terms B, C and D. These and source rate Q are functions of r and t, and they take values provided

in Table I for the three equations. Thus it is sufficient to have an algorithm to treat Eq.(10) for

solving Euler equations. In fact, this form is much more general and a large class of problems can
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TABLE I. coefficient and source terms in generalized continuity equation

Equation G B C D Q

Mass density ρ 0 0 0 0

Momentum density ρu 0 -1 P 0

Energy density ρEt Pu 0 0 source power

be mapped into it by defining the coefficients appropriately.

Implementation of the FCT algorithm for Euler equations uses a two-step integration in time,

mentioned earlier, to reduce truncation error in time derivative. Therefore, the density G is first

computed at tn+1/2, and it has first order accuracy. Then the coefficient terms B, C, D and source

term Q are recomputed at time tn+1/2. Using these time-centered driver and souce terms, the

continuity equation is integrated to time tn+1. The steps just mentioned can be summarized as

follows:

1. Let all the densities ρn
i , (ρu)n

i , Pn
i and (ρEt)

n
i for all i be known at time tn.

2. Next evaluate ρ
n+1/2
i , (ρu)n+1/2

i , and (ρEt)
n+1/2
i for all i at half the time step using FCT

algorithm. This step can be done successively as the equations are uncoupled.

3. Next evaluate Pn+1/2
i using the EOS package. Temperature field T n+1/2

i may also be needed.

4. Now, repeat steps 2 and 3 to advance the solutions from tn+1/2 to tn+1.

C. Discrete equations

The discrete version of the Euler equations is discussed in detail10, so a brief outline is given

below for completeness. The spatial region defined in the problem is divided into N cells or

volumes, as was done earlier. Eulerian and Lagrangian schemes can be developed in a general

way as moving grids velocity is already introduced. Note that the cell volumes change due to

moving grinds in the Lagrangian scheme. With this objective in mind, the cell interfaces are

denoted as rα

i+1/2 (0 ≤ i ≤ N), where the index α denotes either o (old grid ) or n (new grid) at

14



beginning or end of time step δ . Time step index is not shown explicitly unless it is essential for

clarity. Interfaces rα

1/2 and rα

N+1/2 are the first and last in the computational domain, and their

time dependence (if any) is part of the problem specification. These define the velocities of end

point interfaces, namely, u g
1/2 = (rn

1/2− ro
1/2)/δ and u g

N+1/2 = (rn
N+1/2− ro

N+1/2)/δ . As the other

grid velocities (u g
i+1/2, 1 ≤ i ≤ N − 1) are known, the cell interfaces at the end of δ are given

by rn
i+1/2 = ro

i+1/2 + u g
i+1/2 δ (0 ≤ i ≤ N). Coordinates of cell centers are averages defined as:

rα
i = (rα

i+1/2+ rα

i−1/2)/2 (1≤ i≤ N). The cells centered at r0 and rN+1 - known as fictitious guard

cells or ghost cells - lie outside the actual domain.

The interface areas Ai+1/2, which are averages over time, are defined as: 1, π(ro
i+1/2 + rn

i+1/2)

and (4/3)π[(ro
i+1/2)

2 + ro
i+1/2rn

i+1/2 +(rn
i+1/2)

2] in planar, cylindrical, and spherical geometries,

respectively. This averaging ensures that a constant density profile remains unaltered in a static

fluid. The corresponding volume elements V α
i are given by: (rα

i+1/2 − rα

i−1/2) , π[(rα

i+1/2)
2 −

(rα

i−1/2)
2] and (4π/3)[(rα

i+1/2)
3−(rα

i−1/2)
3]. At the beginning of the time step, the interface density

Go
i+1/2 and fluid velocity ui+1/2 are defined as density-weighted averages: Go

i+1/2 = (ρo
i Go

i+1 +

ρo
i+1Go

i )/(ρ
o
i +ρo

i+1) and ui+1/2 = (ρo
i uo

i+1 +ρo
i+1uo

i )/(ρ
0
i +ρo

i+1), respectively. Other weighting

schemes, such as arithmetic averages, can also be used10. The endpoint fluid velocities u1/2 and

uN+1/2 are specified as boundary conditions. Similarly, Go
0 and Go

N+1 for guard cells are also

specified via boundary conditions. Relative velocity of the fluid with respect to the grid, defined

by Ui+1/2 = ui+1/2−u g
i+1/2 (0≤ i≤ N), completes all definitions.

It is now straightforward to derive the discrete formulas from the integral form of conservation law

in Eq.(10). Pure convective part of transport component G∗i is given by:

V o
i G∗i =V o

i Go
i −δ [Ai+1/2Ui+1/2Go

i+1/2−Ai−1/2Ui−1/2Go
i−1/2], 1≤ i≤ N (11)

Here first term is from beginning of time step and the remaining are due to transport across the

interfaces. Note that the relative velocity Ui±1/2 are used in the convective terms. Due to the

occurrence of spatial derivatives, the internal source contributions are readily expressed in terms

of interface areas. Addition of these terms provides the transported density GT
i :

V o
i GT

i =V o
i G∗i +δ [Ai+1/2Bi+1/2−Ai−1/2Bi−1/2]+

+
δ

4
Ci(Ai+1/2 +Ai−1/2)[Di+1−Di−1]+δ (V 0

i Qi). 1≤ i≤ N (12)

Note that the change in cell volume is not introduced here. Values of pressure at end points,

P1/2 and PN+1/2, which are needed in B1/2 and BN+1/2, are to be specified externally. Further,
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as the term (∂D/∂ r)i is approximated using the difference formula (Di+1−Di−1), pressures P0

and PN+1 corresponding to guard cells are needed for D0 and DN+1. Next contribution is from

numerical diffusion flux defined as FD
i+1/2 =−νi+1/2Vi+1/2(GT

i+1−GT
i ). The negative sign is as in

Fick’s law, and the dimensionless positive diffusion coefficient νi+1/2 is to be specified. Average

volume Vi+1/2 corresponding to the interface, which makes the diffusion coefficient dimensionless,

is defined by: V n
i+1/2 = (1/2)(V n

i+1 +V n
i ), and V1/2 = V n

1 and VN+1/2 = V n
N at the end points.

Addition of the net diffusion term, −[FD
i+1/2−FD

i−1/2], to GT
i provides the transported and diffused

density Ḡi given by:

V n
i Ḡi =V o

i GT
i +[νi+1/2Vi+1/2(G

o
i+1−Go

i )−νi−1/2Vi−1/2(G
o
i −Go

i−1)], 1≤ i≤ N (13)

Change of volume V o
i to V n

i in time step δ , due to grid motion, is accounted at this stage.

Next quantity is the anti-diffusion flux defined as FAD
i+1/2 = µi+1/2Vi+1/2(GT

i+1−GT
i ), where µi+1/2

are positive, dimensionless, anti-diffusion coefficients. By this definition, FAD
i+1/2 is along the pos-

itive r-direction when (GT
i+1−GT

i ) > 0, which is just the opposite of Fick’s law. As discussed

earlier, this flux can not be used directly, it has to be corrected to avoid the creation of new maxi-

mum and minimum. The corrected anti-diffusion flux is given by:

FCAD
i+1/2 = S×max

[
0, min

(
S×V n

i+1(Ḡi+2−Ḡi+1), |FAD
i+1/2|, S×V n

i (Ḡi−Ḡi−1)
)]

, 0≤ i≤N (14)

where S = sign(Ḡi+1− Ḡi). Terms proportional to (Ḡ0− Ḡ−1) and (ḠN+2− ḠN+1) are to be

dropped from FCAD
1/2 and FCAD

N+1/2, respectively. Finally, the density Gn
i at the end of δ is given by

V n
i Gn

i =V n
i Ḡi− [FCAD

i+1/2−FCAD
i−1/2], 1≤ i≤ N (15)

It is necessary to generalize the definition of εi+1/2 to make use of the expressions for diffusion

and anti-diffusion coefficients10. The discrete form of convective terms in Eq.(11) suggests that

the mesh width around the interface at rn
i+1/2 may be obtained as (1/h)i+1/2 = (1/2)Ai+1/2/V n

i+1+

(1/2) Ai+1/2/V n
i . This leads to the definition εi+1/2 = δ Ui+1/2(1/h)i+1/2, which in turn leads to

the expressions:

νi+1/2 =
1
6
+

1
3

εi+1/2, µi+1/2 =
1
6
− 1

6
εi+1/2, (16)

εi+1/2 = δ Ui+1/2 Ai+1/2 (1/2)
(

1/V n
i+1 +1/V n

i

)
, 0≤ i≤ N. (17)

The complete set of discrete equations, applicable with arbitrary grid velocity, and hence Eulerian

and Lagrangian schemes, are covered in Eqs.(11) to (17).
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D. Boundary conditions

Different types of boundary conditions, depending on the physics of the problem, are used to

specify the nature of fluid flow at boundaries of the domain. These boundary conditions should

specify expressions to compute Go
0 and Go

N+1 in the guard cells. Straightforward specifications

for free boundaries are: Go
0 = Go

1 and Go
N+1 = Go

N , where G abbreviates ρ , (ρu) and (ρEt).

This automatically defines their end point interface values, and the fluid velocities u1/2 = uo
1 and

uN+1/2 = uo
N . In addition, pressure values P0 = P1/2 = 0.1 MPa and PN+1 = PN+1/2 = 0.1 MPa are

also specified at free boundaries.

For the case of rigid boundary at ro
1/2, like that at the center of a sphere, the specifications

are: ρo
0 = ρo

1 , (ρEt)
o
0 = (ρEt)

o
1, while (ρu)o

0 = −(ρu)o
1 for momentum density. This leads to

the physical requirement that u1/2 = 0. Further, the end point values of pressure are assigned as

P0 = P1/2 = P1. Similar relations apply if ro
N+1/2 is a rigid boundary. Much more general boundary

conditions are also applicable within the FCT subroutine packages distributed by its authors10.

IV. APPLICATIONS

A few strong shock problems are simulated using the the FCT algorithm and typical numerical

results are discussed in this section. Two of these are benchmark problems while the remaining

five are experimental cases involving projectile impact and explosive detonation.

Shock wave generation via projectile (impactor) impact is a common setup in shock wave physics.

Such an impact generates two waves at the interface of impactor and target, a forward moving wave

into the target and one traveling back to the projectile. Fluid in the target are accelerated and attain

a steady velocity eventually. Shock wave moves in the target with its own speed, called shock

velocity Us, while fluid follows with velocity Up. A typical experiment consists of measuring Up

and Us, and the entire Up - Us curve is generated from a series of experiments. In other experiments

pressure versus time profile is measured at some locations in the target. Measurement of release

velocity-time profile, when shock breaks out at the rear surface of the target, is also done. Strong

shocks are also generated by detonating explosive material in contact with the target21. Detonation

process in explosives sustains the shock via releasing chemical energy at the shock front. The

explosive-shock impinging on target acts like a piston at the target interface, thereby generating a

shock that is characteristic of the medium.
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FIG. 1. Numerical and analytical results of pressure for the Sedov-von Neumann-Taylor blast wave problem.

Curves 1, 2 and 3 correspond to planar, cylindrical and spherical geometries (see text). Spatial profiles of

pressure are obtained at 1 s and symbols denote analytical results22. Good agreement found show the

accuracy of FCT algorithm to resolve shock wave profiles.

A. Sedov-von Neumann-Taylo benchmark

In a typical sweep over the meshes, the FCT algorithm generates spatial profiles of density, fluid

velocity and internal energy. A new profile of pressure is then generated to advance to the next time

step. An ideal gas EOS, with specific heat ratio γ = 1.4, is used for this benchmark problem which

deals with outward shock propagation in either planar, cylindrical or spherical geometry. The

process is initiated on depositing internal energies: 0.0673185, 0.311357 and 0.851072 (in ergs)

18



H

0 . 0 0 . 1 0 . 2 0 . 3 0 . 40

2 0

4 0

6 0

8 0

 

 

 r a d i u s  ( c m )

de
ns

ity
 (g

/cm
3 )

FIG. 2. Numerical and analytical results for density profile in the spherical Noh problem (see text). The

density profile is obtained at = 0.6 µs and the dashed line represents the analytical result ( 64 g/cm3 )23.

Slight discrepancy of the profile in the shocked region is noted, even though the shock speed compares well

with analytical result (0.333 µs)23.

at t = 0 in a small volume - first mesh in the simulations - at the center in the three geometries,

respectively22. Analytical solution of the problem shows that the shock travels distances: 0.55,

0.75 and 1.0 cm in 1 second in the three cases22. The simulations used the Eulerian reference

frame with 300 meshes of equal volume within the above regions, and a constant time step of

10−6 second . Numerical results obtained are compared with the analytical density profiles at 1

second in Fig.1. Excellent agreement found brings out the accuracy of the algorithm in capturing

shock profiles and shock speed. Similar comparisons are found for pressure and velocity profiles13.
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FIG. 3. Propagation of shock wave in solid Cu of 20 mm thickness, impacted with 3 mm thick Cu-impactor

with velocity 2 km/s. Curves 1, 2 and 4 correspond to pressure-time profiles at 3, 9 and 15 mm from the

interface. The peak pressure remains unaltered even up to 15 mm. Negative pressure occur at 15 mm at late

times because of the release wave reaching back from the rear surface.

B. Noh benchmark problem

Noh benchmark problem deals with generation of shock at a rigid boundary due to an imploding

fluid. The simulation starts with the specification of inward velocity of 1 cm/µs at all meshes in

a spherical medium of radius 1 cm. The imploding material gets reflected at the center of the

sphere and generates a shock moving outward into the imploding fluid. Solution to Noh problem

corresponds to a stagnation shock where all the fluid variables are stationary behind the shock.

Analysis of Euler equations show that these specifications are compatible only for certain special
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forms of EOS, like the ideal gas EOS23. Analytical expressions for the fluid variables, behind

and ahead of the shock, are then obtained for such types of EOS. Using the ideal gas EOS, with

γ = 5/3 and initial density 1 gm/cm3, the simulation used 500 meshes over 1 cm radius and a time

step of 10−6 second. The spatial density profile so generated at 0.6 µs is compared with analytical

result (64 g/cm3) in Fig.2. Slight discrepancy in the density-profile behind the shock is observed,

even though the shock speed compares well with the analytical value 0.333 cm/µs.

C. Shock propagation in solid Cu

Numerical simulation of shock propagation in solid Cu is considered next. A 20 mm thick

Cu target is impacted with 3 mm thick Cu impactor with 2 km/s velocity. This impact generates

a fluid velocity Up of 1 km/s in the target because the inelastic collision between impactor and

target (which are same material) halves the fluid velocity. The hydrodynamic motion so initiated

is then followed to capture pressure versus time profiles at 3, 9, and 15 mm from the target surface.

Simulations used the EOS package discussed earlier, and the profiles displayed in Fig.3 show a

steady shock propagating in the target. Note that the peak pressure of the pulses ∼ 49 GPa remain

almost the same even after traveling 15 mm. However, width of the pulses decreases because of

energy spend in compressing the shocked material. Sharp variations of pressure are accurately

captured by the FCT algorithm. Shock speed of ∼ 5.5 km/s deduced from the position of pulses

agrees very well with that given by the empirical relation Us = 4.14+1.408 Up for Cu. Magnitude

of shock pressure, that can be computed using the Rankine-Hugoniot relation P = ρ0UsUp, also

agrees with the simulation result. Negative values of pressure are observed at 15 mm at late time.

This is due to the release wave reaching back from the rear surface of the target. FCT algorithm

has also been used for simulating shock attenuation in porous materials13.

D. Pressure-time profile in soild Cu

Pressure versus time profiles at different locations in the target are usually measured in impact

experiments using impedance matching technique12. The experiment considered here employs Cu-

impactor (thickness 2.034 cm) with impact velocity 0.645 km/s and a Cu-target (thickness 18.28

cm). Pressure-time profile is measured at the middle of the target24. This type of comparison of

experimental data with simulation results is useful to check the accuracy of the FCT algorithm
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FIG. 4. Pressure versus time for Cu-impactor (thickness 2.034 mm and impact velocity 0.645 km/s) on

Cu-target (thickness 18.38 mm). Solid line shows simulation results at the center of the target while the

symbols denote experimental data24. Agreement is good, however, the slight disagreement at later times is

due to the omission of material strength effects

.

as well the EOS model. Simulation starts with a configuration where the impactor and target

plate are kept side by side; with the impact velocity specified in all meshes within the impactor.

The resulting hydrodynamic flow is followed and the pressure-time profile given in Fig.4 show

excellent agreement. The algorithm is able to capture the sharp initial pressure increase as well as

subsequent variations in time. Peak pressure and shock duration are accurately modeled, although

slight differences are noted towards the end. This discrepancy could be attributed to the omission
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FIG. 5. Shock pressure versus fluid speed for W (curve-1), Cu (curve-2), Fe (curve-3) and Al (curve-4).

Solid lines are simulation results while symbols denote experimental data25. Excellent agreement obtained,

over this wide range of fluid velocities and materials, show the accuracy of the FCT algorithm and EOS

model.

of material strength effects in the EOS model, which are essential at low pressures.

E. Shock pressure versus fluid speed

A more stringent check on the simulation method and EOS can be done by comparing exper-

imental data on fluid speed (Up) versus shock pressure (P). This type of database is extensive; it

covers a wide of metals, compounds, mixtures and explosives24. As discussed earlier, simulations

of impact experiments can be done at different impact velocities to generate Us versus Up curves
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FIG. 6. Explosive PBX-9404 (outer radius 12.319 cm) driven imploding shock in Al-sphere (radius 3.048

cm)21. Spatial pressure-profiles are shown at time 12.8 µs (curve-1) and 12.5 µs (curve-2) after initiation.

The imploding shock builds up due to spherical convergence effects. The insert graph shows the incomming

shock front (curve-3) and Al-outer radius (curve-4) versus time.

or, more easily, P versus Up curves. By choosing same material for impactor and target, it is easy

to verify the relation Up = (1/2)Uimpact within the simulation. It is essential to employ sufficiently

small time step and mesh width so that a steady shock is established in the target, and peak pressure

in the shock and the corresponding fluid velocity can be read off. Numerical results generated for

four materials (W, Cu, Fe, Al), with impact velocities ∼ 8 km/s, are compared with experimental

data in Fig.5. Excellent agreement obtained, once again, demonstrates the the accuracy of FCT

algorithm as well as the EOS. Similar results have also been obtained in porous materials13.
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FIG. 7. Simulation results for explosive (PBX-9404) driven outward moving shock in Al-shell (inner ra-

dius=15.24 cm, outer radius=15.875 cm). Outer shell-radii versus time are shown for four experimental

configurations corresponding to different gap thicknesses: 0.0 (curve-1), 0.5 (curve-2), 2.0 (curve-3) and

3.81 cm (curve-4), between explosive surface and Al-shell (see text). Lines are simulation results while

symbols denote experimental data26.

F. Imploding shock in Al sphere

Next experiment considered for simulation involves an explosive driven imploding shock gen-

erated in Al21. The arrangement consists of an Al-sphere of radius 3.048 cm surrounded by ex-

plosive PBX-9404 of outer radius 12.319 cm. Detonation of the explosive at its outer surface

generates a converging shock which impinges on Al-sphere. This imploding shock compresses

Al, and also gets amplified as it moves inward due to spherical convergence effects. Position of
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the shock front and Al-explosive interface have been measured at few time points. Simulation

of the set up is done using the JWL model for the burned explosive products26. Spatial profiles

of pressure at time 12.5 µs and 12.8 µs after initiation are shown in Fig.6. These demonstrate

the build up of the shock due to spherical convergence. The incomming shock front and Al-outer

radius versus time are also shown (inset graph) in this figure.

G. Exploding shock in Al shell

The last experiment chosen for comparison involves an outgoing spherical shock in Al-shell

(inner radius 15.24 cm and outer radius 15.875 cm). Explosive PBX-9404 is now a sphere at the

center of the shell, and four experimental configurations used correspond to different explosive

radii, and hence gap thicknesses (0, 0.5, 2.0 and 3.81 cm ) between the explosive surface and Al-

shell inner surface26. On initiating the detonation at the center, first a shock wave moves outward

in the explosive which subsequently breaks out at its surface. The burned explosive products at

high pressure expand and impinge on the Al-shell, thereby launching another shock wave in the

shell. The shell is compressed but also expands when the shock breaks out at its outer surface.

Experimental data on the shell (outer) radius versus time and simulation results for the four cases

are shown in Fig.7. Excellent comparison found shows that the FCT algorithm, together with the

EOS models, generate accurate radius versus time profiles. Delayed expansion for larger gaps and

consequent variations in the breakout velocity are all accurately captured in the simulations.

V. SUMMARY

The main aim in this chapter has been to discuss the FCT algorithm for solving one dimensional

Euler equations. General aspects of numerical schemes for conservation laws and the discrete

set of equations have been covered in some detail. An EOS model suitable for integration with

the algorithm is also outlined. The FCT algorithm has several desirable features: it has second

order accuracy in approximating space and time derivatives; preserves monotone and positivity

properties of fluid variables; also reduces numerical diffusion thereby minimizing smearing of

shock wave profiles. Further, there is no need to add artificial viscosity to accommodate steep

gradients in flow variables. Results of several simulations using the algorithm are also discussed.

These include two benchmark problems and five experimental cases involving plate impact and
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explosive driven shocks.
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