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Abstract

New solutions to the non-equilibrium Marshak wave, within the Pom-
raning -Su-Olson model, are presented using the well known eigenfunction
expansion method for finite slabs. Eigenfunctions and eigenvalues of the
Helmholtz’s equation satisfying the radiation boundary conditions are de-
rived for expanding the solutions. Expansion coefficients at any order are
then determined by solving two coupled first order ordinary differential
equations. Numerical results for the first twenty eigenvalues and normal-
ization constants of the eigenfunctions are given for two slab thicknesses.
Further results include time dependent radiation density, material tem-
perature, time dependent exit currents from the slab, etc. Convergence of
the series for the radiation density is also established using the numerical
solutions. Brief comments for extending the method to finite spherical
and cylindrical geometries are given in the Appendix.



1 Introduction

Benchmark solutions to idealized problems involving radiative transfer problems
have been derived in various approximations. The class of problems termed as
Marshak wave propagation considers radiation incident on one side of a cold ho-
mogeneous medium and penetrating into its interior. In the original formulation
of the problem, Marshak assumed that matter and radiation are in equilibrium,
thereby both being characterized by a single temperature [1]. Pomraning gen-
eralized the formulation to include non-equilibrium effects, wherein radiation
propagation is described by the time dependent radiation diffusion equation
which is coupled to a local energy equation for the material. Considering an ini-
tially cold material, extending into a semi-infinite medium, Pomraning obtained
analytical solutions to several quantities of interest assuming that the opacity of
the medium is independent of temperature while its heat capacity varies as cube
of temperature. Except for spatially averaged radiation energy density and ma-
terial temperature, all the numerical results reported by Pomraning were within
the the non-retardation approximation wherein speed of light is assumed to be
infinite [2].

The model problem was considered afresh by Su and Olson who obtained
results for several quantities, including spatial distributions of radiation energy
density and material temperature, without invoking the non-retardation approx-
imation [3]. These results are of great use in validating radiation diffusion codes,
which are intended to solve more complex problems involving general nonlinear
dependence of opacity and heat capacity on material temperature and density.
Ganopal and Pomraning have also analyzed the same model problem when ra-
diation penetration into the medium is treated using the radiation transport
equation in lieu of the radiation diffusion equation [4].

In this report, the Pomraning-Su-Olson (PSO) model of Marshak wave is
considered in finite sized media. Using the eigenfunction expansion (EFE)
method, new benchmark results for finite slab geometry are obtained for cases
of steady as well as time dependent incident radiation fluxes. It is hoped that
these new results will supplement the existing data base for validating radiation
diffusion computer codes [5]. The remaining part of the report is organized as
follows. The Marshak wave model is explained in section 2. Specialization to
planar geometry and the EFE method are covered in section 3. The first twenty
eigenvalues and normalization constants of eigenfunctions for two slab thick-
nesses are also given in this section. All the remaining results which include
time dependent radiation density, material temperature, time dependent exit
currents from the slab, etc., are given in section 4. Convergence of the series for
the radiation density is also established here by computing partial sums in the
EFE. Extensions of the method for finite sphere and cylindrical are straight-
forward and are briefly indicated given in the Appendix, though no numerical
results are presented. The report is concluded in section 5.

2 Marshak Wave Model

In Marshak wave propagation, radiation is incident on the left side of a ho-
mogeneous and cold medium. Within the diffusion approximation, radiation



propagation is described by
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where E(r,t) is radiation energy density at position co-ordinate r and time t.
The index n takes values 0,1 and 2 for one dimensional planar, cylindrical and
spherical geometry. The diffusion coefficient D is given by D = 1/[3K(T)]
where K(T') denotes the gray opacity of the medium. The radiation constant a
is defined as a = 40/c where ¢ is Stefan-Boltzmann constant and ¢ is speed of
light.

Considering a boundary of the medium at rg, the radiation flux Fj,(t) inci-
dent on the medium is specified by the Marshak boundary condition

B0, 1) F 2eD 2 E(ro, )y = Fin(1), 2)
where the F sign denotes radiation incident in the £ ve r-directions into the
medium. A free boundary is obtained when F;,,(¢) = 0. The initial cold condition
on radiation density is specified as E(r,0) = 0.

The material energy density evolves according to the local material temper-
ature equation

CU(T)%T(T, t) = cK(T)( E(r,t) — aT*(r,t) ), (3)
where C,(T) is the heat capacity of the medium. The cold initial condition of
the medium is further specified as T'(r,0) = 0.

The PSO model assumes that the opacity K(7T') is independent of tempera-
ture and the heat capacity is given by C,(T) = aT® where « is a proportionality
constant. Then the equations specifying the model can be reduced into a neat
dimensionless form. For this purpose, Pomraning introduces the dimensionless
independent variables [2]

4
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and dependent variables

c E ca
u(z,7) = 15, v(z,7) = - —T*. (5)
Here Fj is a normalization constant in the incident flux defined as Fj,(t) =
Fof (7). Then the system of equations and boundary conditions can be cast in
dimensionless form as follows:
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u(zo,7) — %%U(ﬂﬁﬂ')\xo f(7)
2 0
u(zr,7) + —u(z,7)|z, =0, (7)



where € = 4a/a = 160/(ca). The boundary at x; is taken to be free. The
non-retardation approximation assumes that e = 0 and corresponds to infinite
propagation speed of radition [2]. Eqgs.(6) are to be solved using the boundary
conditions of Eq.(7) and the initial conditions

u(z,0) = v(x,0) =0 (8)

for finite slab geometry.

2.1 Incident Radiation Flux

The case of a steady incident flux is specified by the condition f(7) =1 (Fig.1).
This was the problem considered earlier by Pomraning as well as Su and Olson
[2], [3]. However, a typical time dependent incident flux (Fig.2) is also considered
here for application. While this flux saturates to a steady value, there can also
be problems involving a pulsed input flux, as shown in Fig.3. The method
developed in this report can take into account any general time dependent input
flux.

3 Eigenfunction Expansion Method

3.1 Asymptotic and Transient Solutions

For plane geometry, the transport equations reduce to the form:

0 9?
egu — 7&%2“ =v(x,7) —u(z,7)

9y = wer) - (@) (9)
or

Assuming that the slab occupies the region, 0 < z < b, where b is the dimen-
sionless thickness of the slab, the boundary conditions are given by

u(b,7) + %%u(x, T =0 (10)

The initial conditions of Eq.(8) are unchanged. Solutions to Egs.(9) can be
obtained using the EFE method. However, it is necessary to restrict EFE to
the part of the solution that satisfies homogeneous boundary conditions. This
can be done within the PSU model as its equations are linear. So we separate
the solutions u(z,7) and v(z,7) as

u(z,7) = wua(z,7)+ur(z,7)
”U(l’,T) = UA(IL',T)+’UT($,T) (11)

where uy(x,7) and va(z,7) are asymptotic solutions satisfying the time inde-
pendent equations
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but same boundary conditions of Egs.(10), viz.,

w07 = Zp sl = fr)
b 20 =0 1
ua(b,7) + %auA(x,T)h,— (13)

In Egs.(12) and (13), 7 is simply a parameter. Solutions to these “steady state”
equations, which satisfy the boundary conditions of Eq.(13), are easily found to

be
b+2/\/3—=x
b+4y3

The equations satisfied by the transient solutions ur(x,7) and vr(x, ) readily
follow from substituting Eq.(11) into (9):

ua(@,7) =valz,7) = f(1) (14)
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70T = ur(z,7) —vp(w,7) — 7704 (15)

These have to be solved by imposing the homogeneous boundary conditions

2 0
UT(O,T) — %%UT(JJ,T”O:O
2 0
ur(b,7) + %%UT(I,T”(; =0 (16)
and the initial conditions
ur(x,0) = vp(z,0) = —ua(z,0) (17)

Next a complete set of functions are obtained using the homogeneous eigenvalue
problem of the Helmholtz equation. It is necessary to stress the importance of
separating the solution into the asymptotic and transient parts. Functions sat-
isfying homogeneous boundary conditions alone can be expanded in terms of the
eigenfunctions, as they also usually obey homogeneous boundary conditions. Of
course the Fourier functions obeying periodic boundary conditions are excep-
tions.

3.2 Eigenvalue Problem
Consider the eigenvalue problem

2

7 0(a) + 12() = 0 (18)

with the boundary conditions

2 0
#(0) — %%Qﬂozo
2 0
o) + %%Gﬂbzo (19)



The general solution to Eq.(18) can be written as

o(x) = esinfux + d)]
sin(c)

cos(d)]

= J[ccos(d)][sin(ux) + cos(ux) (20)
where the arbitrary constants ¢ and d have to be determined from the boundary
conditions. Application of the left boundary condition yields one condition
between the arbitrary constants, viz.,

o~ ey
which is used in Eq.(20) to obtain
0la) = Clinua) + —zpucos(ua) (22)

The remaining arbitrary constant is redefined as C' = ccos(d). Now, applying
the right boundary condition one gets

%M[COS(MZ)) - %u sin(ub)] + [sin(ub) + %u cos(ub)] =0 (23)

On simplification, the eigenvalue equation for determining p is obtained as

tan(ub) = —— (24)

IRTINCERVE

This transcendental equation provides an infinite set of eigenvalues p,, and the
corresponding eigenfunctions

dn(z) = Cpsin|(incr) + %un) cos(pin)] (25)

The arbitrary constant C,, is determined by the normalizing condition on ¢,,(x)

b
/<¢>i($)dw =1 (26)
0

which provides the equation
Ch = 120, [(3+4p3) 20000 — (3—4pa) sin(2p1,b) +4+/3pan (1 — cos(201,0))] ™ (27)

Eq.(24) shows that the roots p,, occour in + pairs and p,, = 0 is a root. Further
its RHS decreases as u,, ! for large n, and hence the asymptotic eigenvalues val-
ues are separated by 7. The first twenty positive eigenvalues and normalization
constants for b =1 and b = 5 are listed in Table 1. The eigenfunctions given in
Eq.(25) are now orthonormal for different positive eigenvalues:

b

/ 6 (@) b () = Gy (28)
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Table 1: Eigenvalues p,, and normalization constants C,,

No. 229 On Hn Cn
b=1 b=1 b=5 b=5

1 1.22826  0.613088  0.440209 0.482207
2 3.61221 0.310784  1.46964 0.30353
3 6.54624 0.181898  2.04518  0.238385
4 9.60463 0.125863  2.64006  0.192851
5 12.7025 0.0956844 3.24589  0.160594
6 15.8174 0.0770492 3.85823  0.137006
7 18.9409 0.0644387 4.47470  0.119185
8 22.0696 0.0553538 5.09391  0.105323
9 25.2014 0.0485035 5.71502  0.0942699
10 28.3354 0.0431565 6.33751 0.0852695
11 31.4709 0.0388681 6.96101 0.0778089
12 34.6076 0.0353528 7.58529 0.0715302
13 37.7450 0.0324296 8.21018 0.0661766
14 40.8831 0.029935 8.83554 0.0615601
15 44.0216 0.0278037 9.46129 0.0575396
16 47.1600 0.0259552 10.0874 0.0540078
17 50.2999 0.0243369 10.7137 0.0508812
18 53.4395 0.0229084 11.3402 0.0480945
19  56.5793 0.0216381 11.9669 0.0455954
20 59.7193 0.0205012 12.5938 0.0433418



where 9,,, is the Kronecker delta. The first three eigenfunctions for slab

thickness b = 1 are shown in Fig.4. It is important to realize that a complete
set of eigenvalues and eigenfunctions have to be determined for the EFE method
as outlined above. For example, a simple Fourier expansion will not suffice since
that will not satisfy the boundary conditions on the radiation density.

3.3 Series Solution

The eigenfunctions form a complete set and the transient solutions up(z, 7) and
vr(x,7), which satisfy homogeneous boundary conditions, can be expanded as

ur (x7 T) - Z an ¢n

UT(IvT) = an(7)¢n($) (29)

The expansion is restricted to positive values of i, as the the transient solutions
should tend to zero for large 7. Subsitution into Eqs.(15) gives a set of ordinary
differential equations (ODE):

cam +  am(pl, +1) = by = —ef'(T)gn
e 4 by — = —f(T)gn (30)

where f/(7) is the derivtive of f(7) with 7 and g, is given by

b+ 2/\/3—x
/d)” b+4/3 Toray3 @ (31)

The initial conditions on a, (7) and b, (7), obtained by using Egs.(29) in Eq.(17)
and the orthogonality of the eigenfunctions, are given by

an(0) = bn(0) = —gn (32)

The set of ODE in Eq.(30) can be readily integrated using the initial conditions
given above.

4 Results

First of all, consider the case of a constant incident flux. Spatial distribution
the radiation density (u(z,7)) for slab thickness b = 1 are shown in Fig.5 for
four values of 7, viz., 0.01, 0.1, 1 and 10. The asymptotic solution, also shown
there, almost coincides with the solution at 7 = 10., thereby showing that a
steady state is reached by this time for the case of constant input flux.

For the case of rising incident flux (Fig.2), spatial distributions of the radi-
ation density, u(x, 7), and material temperature, v(x, 7), are shown in Fig.6 for
three values of 7; 3, 5 and 10. Initially, v(z, ) lags behind u(z,7), however it
catches up later. It should be noted that v(z,7) ~ T*(z, 7), and hence T'(x,T)



Table 2: Convergence of eigenfunction expansion ur(b/2, 7, N)

0.106457 0.358914 0.470546
0.106457 0.358914 0.470546
0.106971 0.359123 0.470557
0.106971 0.359123 0.470557
0.106932 0.359108 0.470556
0.106932 0.359108 0.470556
0.10694 0.359111 0.470556
0.10694 0.359111 0.470556
0.106938 0.35911  0.470556
0 0.106938 0.35911 0.470556

= © 00 O Ui Wi+

would have more steeper spatial distribution. The first two coefficients in the
series expansion of u(x,7) and v(z,7) are shown in Fig.7. The characteristic
feature in their variation is the initial build up and later decay to zero as re-
quired for the transient solution for the rising incident flux. The exit currents;
i.e., the currents leaving the left and right surfaces, are given by:

0.7 = (o) + Tl

) = ubr) = 2@l (3)

Their time dependence is shown in Fig.8. A negative value of j_(0,7) up to
tau ~ 5 indicates that no radiation is leaving the left surface during this time.

All the results discussed above were obtained with N = 20. To test the
convergence of the series in the EFE method, we next calculate partial sums for
the radiation density:

N
ur(z, 7, N) =Y an(7)én(z) (34)

These are tabulated in Table 2 for different values of N at = b/2 and 7 = 3,5, 8.
It is clear that the results converge quite well as N is increased up to about 10.
However, more terms would be needed for slabs of larger thicknesses.

5 Conclusions

In this report we have presented the EFE method to solve the Marshak wave
propagation problem in finite slabs within the PSO model. Numerical results for
the eigenvalues and normalization constants, time dependent radiation density,
material temperature, exit currents, etc., have been provided. Convergence of



1.2

input flux

incident radiation flux
>

0.8 A i

o 1 2 3 4 5 6 7 8 9 10
dimensionless time (r)

Figure 1: Constant incident radiation flux f(7) Vs time (1)

the expansion has also been shown. The attractive feature of the method is
that any quantity depending on the radiation density or material temperature
can be easily computed. Further, general time dependent incident flux, as may
occur in experiments, can also be incorporated. the method can be generalized
to other one dimensional geometries.
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A Spherical and Cylindrical Geometries

The EFE method described in the main text can be generalized to spherical and
cylindrical geometries in a straightforward manner with minor modifications in
the boundary conditions. For example, in the cases of finite sphere or cylinder,
the incident radiation would be on the outer boundary. For spherical geometry,
the eigenvalue equation is

1 0 0

ﬁ%$2%¢($) +pPp(x) =0 (35)
which can be reduced to that in planar case with the substitution ¢(x) = ¥ (z)/x.
The boundary condition on ¢(x) at the right boundary is same as that in planar
geometry. However, boundary condition to be used at the centre is that ¢(0) is
finite.

For spherical or cylindrical shells, the situation is almost identical to that
for planar slabs. The differences in the spatial derivative terms in the diffusion
equation and the volume elements shound be noted. Thus the method can be
used to study equilibration and decay of a radiation pulse in a spherical or
cylindrical shell thereby simulating a laser driven hohlraum.
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