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Radiative Transfer -  

An outline of  Prof. Subramanyan  Chandrasekhar’s contributions. 

S. V. G. Menon  

Introduction: 

Radiative transfer theory deals with the study of transfer of radiant energy through a medium 

that absorbs, scatters or emits radiation. Radiation can be of electromagnetic origin  light, x-rays 

 or of nuclear type like, neutrons, -rays or -particles.  

Prof. Subramanyan Chandrasekhar made very significant and outstanding contributions to this 

field - which, perhaps, is one of the most important branches of theoretical Astrophysics today. 

He published a number of original papers, most of them in the Astrophysical Journal, during a 

decade starting from 1942. Most of these were really path breaking in that the whole subject was 

being evolved and developed with these papers. Thus he was instrumental to show examples, 

where, neither the author nor the journal, can anticipate the impact of a scientific work.  

Prof. Chandrasekhar also wrote the first definitive monograph on the subject in 1950: Radia-

tive Transfer [1]. Almost all his original papers are discussed in great detail in this book, and it 

would be futile even to attempt to describe them here.  

However, a few remarks in the preface of the book seem important: “In this book I have at-

tempted to present the subject of radiative transfer in plane parallel atmospheres as a branch of 

mathematical physics with its own characteristic methods and techniques. On the physical side the 

novelty of the methods used consists of employment of certain general principles of invariance 

which on the mathematical side leads to the systematic use of non-linear integral equations and the 
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development of the theory of a special class of such equations. On these accounts the subject 

would seem to have an interest which is beyond that of the specialist alone: at any rate, that has 

been my justification for writing the book."  

It is also very interesting to note his remarks2 about the field of radiative transfer: “ My re-

search on radiative transfer gave me the most satisfaction. I worked on it for five years, and the 

subject, I felt, developed on its own initiative and momentum. Problems arose one by one, each 

more complex than the previous one, and they were solved. The whole subject attained an eleg-

ance and a beauty which I do not find to the same degree in any of my other work. And when I 

finally wrote the book Radiative Transfer, I left the area entirely. Although I could think of sev-

eral problems, I did not want to spoil the coherence and beauty of the subject [by further addi-

tions]. Furthermore, as the subject had developed, I also had developed. It gave me for the first 

time a degree of self-assurance and confidence in my scientific work because here was a situation 

where I was not looking for problems. The subject, not easy by any standards, seemed to evolve 

on its own.” 

The subject of radiative transfer originated way back in the 18th century when physicists were 

concerned with the visibility of the atmospheres. It was at this time Lord Rayleigh formulated his 

famous scattering law of light by a particle with a specified dielectric constant. However, its prop-

er formulation as a classical macroscopic theory was given by Arthur Schuster in a paper titled 

“Radiation through a foggy atmosphere” in 1905. Radiative transfer theory is based on concepts 

of radiation intensity, energy density, degree of polarization, etc. Interaction of radiation with 

matter is described on a phenomenological level in terms of scattering, absorption and emission 



 6

properties of the medium. For the case of light, where frequency is about 6x1011 per second, in-

tensity of radiation propagating in a certain direction can be expressed as a ‘time average’ of the 

Poynting vector of electromagnetic theory. Just like the radiation intensity, the Poynting vector 

also must vary slowly over a spatial region of detector resolution to use this concept. Phenomena 

such as interference and diffraction of light are not included in the ‘classical’ domain of radiative 

transfer theory. However, their effects can be incorporated in material properties.  

When properties of the medium  which includes absorption, scattering and emission characte-

ristics  and certain conditions regarding the incidence of radiation at the boundaries of the me-

dium are specified, the theory determines the radiation distribution throughout the medium. Prob-

lems in atmospheric and astrophysical areas related to transfer of light provided the necessary im-

petus for the development of the theory. In addition to playing a great part in the physical pheno-

mena occurring in astrophysical bodies, radiative transfer governs the light in the outer atmos-

phere, and hence the character of their spectra. Further, today it has a lot of relevance due to its 

applications in fission and fusion reactor designs.  

Equations of Radiative Transfer  

One of the simplest cases of radiative transfer equations is that for a plane parallel medium that 

reads as  





           x
I x K I x J K p I x d( , ) ( , ) ( ) ( , ' ) ' ( )  




1
2
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2 “ CHANDRA ”, A Biography of S. Chandrasekhar, by K. C. Wali, The University of Chicago 
Press (1991), page 190. 
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where I is the radiation intensity  of frequency   varying only along the x-axis,  is the cosine 

of the angle between the direction of motion and the x-axis, K is the mass absorption coefficient 

and  is the density of the medium. The function p(0) (0 is the cosine of the scattering angle), 

which is called the scattering law of the medium, specifies the angular distribution of the scattered 

radiation. While the terms on the left denote, respectively, the rates of radiation flow and its re-

moval from the direction of motion in a stationary situation, J gives the rate at which radiation is 

scattered into the direction of motion. It is assumed that the medium does not absorb radiation, its 

scattering is elastic and there are no sources inside. These generalizations can be incorporated 

very easily. As an example, this equation can describe the steady transfer of radiation incident on 

some boundary. A medium that steadily transfers the radiation incident on it is said to be in radia-

tive equilibrium. Equations exactly of this type occur in the description of neutron and -ray 

transport in reactor and shield media [2]. Thus the relevance of radiative transfer theory to the 

nuclear industry is obvious. 

An alternate situation is of a medium, like the stellar atmosphere, which is in local thermody-

namic equilibrium. Then, on assuming that a temperature T can be specified at every point in the 

medium, the term J can be expressed as J = K  B, where B is the well known Planck func-

tion: 

 B h
c h kTe 






2 1
1

3

2 /  

Here, h and k denote, respectively, the Planck and Boltzmann constants, and c is the velocity 

of light. The total radiation intensity (x)  which can be obtained by integrating I (x,) over  

and  can then be related to the local temperature using Stefan’s law:  = T4/, where  is Ste-
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fan’s constant, thereby yielding an equation for temperature. The mass absorption coefficient, K, 

strongly depends on temperature, and hence the problem highly non-linear. Solutions to problems 

of this nature yield the steady temperature distribution in the stellar atmosphere, its brightness, 

etc. 

In certain problems, as occurring in laser induced fusion concepts, the deposition of energetic 

radiation, which can also be energetic electrons or ions, induces local heating and hydrodynamic 

motion in the medium. The ‘pdV’ work done on the medium, due to the induced hydrodynamics, 

can further heat up the medium with subsequent production of thermal radiation. The transfer of 

the radiation so produced is of utmost importance in the design of fusion reactor systems. For ex-

ample, the thermal energy and radiant energy become comparable at about 100 eV in a dilute gas 

with particle number density ~ 1019 per cm3. Even at lower temperatures, the radiant flux can be-

come comparable to material energy flux as the velocity of light is much larger than fluid velocity. 

These problems are intrinsically time dependent, and further, the equations of radiative transfer 

get coupled with equations of hydrodynamics. Thus the ‘energy equation’ of invicid hydrodynam-

ics becomes [3] 




 



 
t

u
x

u u up S( / ) [ ( / ) ]     2 22 2  

where  is the specific internal energy, u is fluid speed and p is fluid pressure. The radiant heat 

flux S=c  (last term on the right) is to be obtained from the solution of the time dependent radia-

tive transfer equation. Radiant energy and work done by radiation pressure are neglected in this 

equation. Having made these general remarks about the applications of radiation transfer theory, 

let us go back to the main theme of the lecture. 
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Wick-Chandrasekhar Method : 

Prof. Chandrasekhar developed several new mathematical techniques for solving the radiation 

transport equations. With a view to have a method of sufficient generality, Prof. Chandrasekhar  

independent of G. C. Wick  pioneered the use of an approximation scheme to solve radiation 

transfer problems.  In this method the integral in Eq.(1) is approximated using Gauss’s quadrature 

formula : 

I x d a I xj j
j

m

   ( , ) ( , )
 
 
1

1

1

 

where aj’s are the weights and j’s are the ordinates of the mth order formula. Use of this formula 

was a generalization of an earlier work of A. Schuster, who had employed the specific case of 2nd 

order Gauss’s quadrature. With this approximation, Eq.(1) reduces to a system of differential eq-

uations for  I(x, j) for 1  j  m., thus bringing it to the ‘standard form’ for further analysis. 

Thus Prof. Chandrasekhar solved a variety of problems in radiation transfer theory. He writes that 

the aim was to have “a general method capable of disclosing unsuspected relationships between 

solutions to different problems”. Most interestingly, the method led to the discovery of a new set 

of mathematical functions  the H-functions in radiation transfer theory.  

Before discussing the H-functions, let it be noted that a modified form of the 

Wick-Chandrasekhar method  called the discrete ordinates method  is used routinely today in 

almost all numerical algorithms dealing with transfer of radiation. This generalized method was 

developed at the Los Alamos Laboratory, by Carson and  Lathrop, for solving sufficiently general 

problems, including different geometries,  in radiation transport theory. 
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Chandrasekhar’s H-functions : 

There are two important problems in radiation transfer theory of planar media: 

i) Determination of the angular distribution of emergent radiation I(0, ) from a semi-infinite 

medium, say, extending over the positive half plane, with a constant flux of radiation flowing 

through it. 

ii)  Determination of the angular distribution I(0, , i) of reflected radiation from a semi-infinite 

medium when radiation is incident along a particular direction, say, at an angle specified by i.  

The relevance of these problems to astrophysics is, perhaps, obvious: While the first models 

the radiation emerging out of the outer atmosphere of star (Fig.1 a), the second mimics the reflec-

tion of incident radiation on a planetary object (Fig.1 b). Thus, the solutions to these are, respec-

tively, known as the ‘law of darkening’ and the ‘law of diffuse reflection’. 

Chandrasekhar’s method, mentioned above, showed a remarkable fact that solutions to both 

problems can be expressed in terms of a single function which he called the H-function. For the 

case of an isotropic scattering medium, a representation of the H-function turns out to be: 

H
k

a
kn

i
i

n

n
j

jj

n

( )
...

( )

( )
;
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

  
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







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
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
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where j’s are the positive zeros of the Legendre polynomial P2n() and k’s are to be determined 

by solving the second equation above. Then, the emergent flux is given by 

I(0, ) = F 3/4 H() 

where F is the radiation flux, expresses the law of darkening.  
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The law of diffuse reflection from a medium characterized by the albedo 0 - which is the 

probability of scattering in an interaction - can be expressed as  

I(0, , i) = F/4 i 0 /( + i) H() H(i). 

Fig.2 shows the variation of  H() with  for some values of the parameter 0. Development of 

equations obeyed by the H-functions was most clearly obtained with the use of certain invariance 

principles, the complete set of which were first formulated by Prof. Chandrasekhar. 

Principles of Invariance: 

Radiation transfer theory discussed so far uses the local formulation as quantities defined local-

ly alone are employed. In 1943 Ambarzumian formulated an invariance principle for the law of 

diffuse reflection: 

 The law of diffuse reflection from an infinitely deep homogeneous plane parallel medium is 

invariant with respect to the addition (or subtraction) of layers of arbitrary finite optical thick-

ness to (or from) the medium. 

For the law of darkening, Prof. Chandrasekhar modified the principle as follows: 

 The emergent distribution from a semi-infinite plane parallel medium is invariant to the addi-

tion (or subtraction) of layers of arbitrary optical thickness to (or from) the medium.  

With the use of these principles, he showed that the H-function obeys the non-linear integral 

equation : 

H H
H

d( ) ( )
( ' )

'
'


 


 

 
1

2
0

0

1
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The above equation is for isotropic scattering, its generalized form for an arbitrary scattering 

law was also developed. The representation of the H-function given earlier can be readily derived 

from this equation using the Wick-Chandrasekhar method. 

The invariance principles are not limited to semi-infinite media. The generalization of the prin-

ciples to finite media made possible the solution of a large class of problems long considered im-

possible to solve. The four principles of Prof. Chandrasekhar can be stated as follows: 

 Let the incident radiation flux F be in the forward direction i (see Fig.3 a). Then the reflected 

intensity I(, r), at an (optical) distance  in the reflected direction r, results from the reflec-

tion of the attenuated incident flux F exp(-/i) and the flux I(,  f), in the forward direction 

f, by the medium of thickness 1-. 

 The intensity I(, f), in the forward direction at distance , (see Fig.3 b) results from the 

transmission of the incident flux through the thickness , and the reflection by the same sur-

face of the intensity I(, r) in the reflected direction r, which arises due to the presence of 

the medium of thickness 1-. 

 The law of diffuse reflection S(1, r, i) of a medium of thickness 1 is equivalent to reflec-

tion of part of the medium of thickness  (part A in Fig.3 c) and the transmission by the same 

part of I(, r), which arises due to the presence of the medium of thickness 1- (part B). 

 Just like the law of reflection, a law of transmission can also be introduced. The transmission 

law T(1, f, 0) of a medium of thickness 1 (see Fig.3 d) is equivalent to the transmission of 

thickness 1- (part B) of the attenuated incident flux F exp(-/i) and I(, f), which is con-

tributed by the part of thickness  (part A). 

These four invariance principles suffice to determine the radiation intensity inside the medium.  
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Chandrasekhar’s X- and Y- functions: 

Analysis of the four invariance principles shows that laws of diffuse reflection and transmission 

of a medium of optical thickness 1, viz., S(1, r, i) and T(1, f, i), can be expressed in terms 

of the solutions of two non-linear integral equations. These equations, in fact, result from a gene-

ralization of the equation for the H-functions. For the case of isotropic scattering, the X- and Y- 

functions obey the equations : 

X X X Y Y
d

Y Y X X Y
de

( ) [ ( ) ( ' ) ( ) ( ' ) ]
'

'

( ) [ ( ) ( ' ) ( ) ( ' ) ]
'

'
/




    


 




    


 
 

  


  







1
2

2

0

0

1

0

0

1
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Solutions to problems in radiation transfer theory in finite plane parallel media can be expressed in 

terms of these functions.  

A particularly interesting application, which is of interest in studies of structure of materials by 

scattering of radiation like neutrons, x-rays or light, in an inverse problem to determine the scat-

tering law of a medium from the measured reflection and transmission laws. The incident radiation 

on the medium is usually at normal incidence. The scattering law - introduced as p(0) earlier - 

contains information on the structure of the scattering sub-units. This method of using radiative 

transfer theory will be valid when multiple scattering is incoherent as is the case usually. 

Transfer of polarized radiation: 

The polarization state of light (as well as of neutrons) changes on scattering. According to 

Rayleigh’s law, unpolarised light beam gets partially polarized on scattering from a particle. The 

ratio of intensities in directions parallel and perpendicular to the plane of scattering (which is 
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made of the incident and reflected light) is in the ratio cos2():1 where  is the scattering angle. 

Thus light in the atmosphere is partially polarized, and the determination of the state of polariza-

tion - at different space points and directions of motion - is a very involved problem. The radiation 

field has to be characterized by specifying the intensity, degree of polarization, plane of polariza-

tion and ellipticity of polarization. This is usually done in terms of Stokes parameters: i) the inten-

sity I = Il + Ir, ii) the difference Q = Il - Ir (Il and Ir are the intensities in two mutually perpendicular 

directions in a plane transverse to the direction of propagation), (iii) U and (iv) V, which specify 

the plane of polarization and ellipticity. Thus if the angles (, ) represent the direction of motion 

of light in the atmosphere, then the four component vector [Il(, ), Ir(, ), U(, ), V(, )] de-

termines the polarization state of light at a spatial point. For unpolarised light, Il = Ir and U = V = 

0. Radiation transfer equations in terms of the four component vector were first formulated and 

solved by Prof. Chandrasekhar. 

Summary: 

What is discussed above is, perhaps, the absolute minimum of the momentous contributions of 

Prof. Chandrasekhar to radiation transfer theory. As mentioned earlier, the subject is of immense 

importance today, particularly to those pursuing fission and fusion technologies. In the former, 

most of the aspects of chain reacting systems are determined by the neutron and -radiation fields. 

In all the fusion concepts, high temperatures, production, absorption and transfer of thermal radia-

tion is of utmost importance. This is in addition to the transport of high energy neutrons and 

charged particles produced in these systems.  

Finally, it is necessary to mention the related topic of rarefied gas dynamics [4]. As the rarefied 

gas is very dilute and sparse, its hydrodynamic description turns out to be inadequate. However, 
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collisions between the molecules, and of the molecules with the container walls are important. 

Thus a linearized Boltzmann equation is used to describe the distribution function of the mole-

cules in the gas. The mathematical structure of the resulting equations have a lot in common with 

those in radiation transfer theory. The methods and techniques originated by Prof. Chandrasekhar 

in radiation transfer theory have been of great use in all these fields, and they will continue to be 

used for years to come. 

Acknowledgments: I thank Dr. D. C. Sahni for his remarks and suggestions on the manuscript. 
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