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STATEMENT REGARDING NEW FACTS ETC,,
REQUIRED UNDER THE RULE 0.413

In this thesis a new formulation of the problem of resonance absorption has been
presented. The method employs the Fourier transformation of the slowing down equation.
It is general in the sense that the procedure can be used in all situations where the Fourier

transformation of the resonance cross-sections can be obtained.

The analytical expressions obtained for the zero temperature resonance integrals
are new and have general applicability. A new formulation of the intermediate resonance

approximation has also been given.

A new method using the Gauss-Hermite quadrature formulae for the evaluation of
temperature dependent resonance integrals has been formulated and verified. As a bi-

product, a fast and accurate method for the evaluation of the J-function has been justified.

A new formulation and method of solution of the problem of overlapping
resonances of an absorber has been given. Finally, a new interpretation of the
normalization condition based on the theory of distributions was found which allows the
use of Fourier transformation methods for solving the homogenous form of the integral

equation of the slowing down theory.
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CHAPTER-I
INTRODUCTION

A. Introduction to Slowing Down Theory:

The basic aspect of nuclear reactor theory is the study of the neutron density
distribution which gives information on the average behavior of neutrons in the reactor
system. In the general situation, the neutron density is a function of time and phase space
co-ordinates. It satisfies the neutron transport equation, which is a linear form of the
Boltzmann equation, stating neutron conservation in an elemental volume of phase space
[1,2]. In this approach to reactor theory, it is tacitly assumed that neutron density is
sufficiently large (~ 10° /c.c) so that the study of the average behavior is adequate for
many purposes. At the same time it is also implied that the neutron density is much
smaller than the density of reactor medium nuclei (~ 10**/c.c) so that the rate of neutron-
neutron interactions is negligible in comparison to that with the nuclei. The simplification
offered by this approximation is the linearity of the transport equation in neutron density.

The nature of neutron-nucleus interactions enters into the transport equation as
cross-sections, and usually the interactions due to the magnetic moment of the neutron
are neglected. Even though the interaction cross-sections have their origin in quantum
mechanical principles, the description offered by the transport equation is purely classical
in the sense that neutrons are considered as point particles.

These assumptions mentioned so far are quite adequate for most of the reactor
applications. Even then the transport equation poses many problems, partly due to its
mathematical structure and partly due to the heterogeneous arrangement of materials in
the reactor and the complicated dependence of the cross-sections on neutron energy.
These facts necessitate the introduction of further simplifications. For instance, one
considers an infinite homogeneous medium and investigates the distribution of neutrons
in energy. Similarly, to gain insight in to the spatial and angular distribution of neutrons,
one usually assumes that they can be classified as belonging to one or two energy groups.

The energy range of interest in reactor physics can be broadly classified as fast,

resonance and thermal regions. In the energy range covering the first two regions, usually



known as slowing down region, neutrons can only loose their energy in scattering
collisions. In the third region, known as thermal region, they ca either lose or gain energy
in scattering collisions. This happens due to the thermal motion of the scattering nuclei.

Main difficulty in the analytical treatment of neutron slowing down originates
from the resonance structure of the cross-sections foe neutron interaction with fissile and
fertile nuclei. Usually in nuclear reactors, resonance absorbers are lumped to reduce
neutron capture in these resonances. Hence a rigorous treatment of the problem should
start from the space dependent form of the transport equation. However, it has been
shown by several investigators [3-6] that, to a good accuracy, this space dependent
problem can be reduced to an equivalent infinite homogeneous medium problem.

The necessary steps involved to show this equivalence are the introduction of the
“flat flux” approximation in the moderator and absorber regions and the asymptotic or
unperturbed form of neutron energy distribution function in the moderator collision
integrals of the transport equation. This enables one to write the equation in terms of the
“first flight escape probability” for neutrons from the absorber regions. Use of the
rational forms for the escape probability makes further simplifications. Then the problem
becomes identical to that in an infinite medium where the resonance absorber and a
fictitious moderator with energy independent scattering cross-section are homogeneously
mixed together. At any rate, space independent equation will be the starting point for the
discussion of even space dependent resonance absorption problems.

Foe the case of an infinite homogeneous medium, in the time independent
situation, the neutron transport equation reduces to an integral equation for the neutron
flux. The kernel of this integral equation has discontinuities arising from the finite energy
loss suffered by a neutron in a scattering collision with the nuclide (except in the case of
scattering from protons). The physical reason for this originates from the laws of
conservation of energy and linear momentum in collisions. The doubly discontinuous
nature of the kernel makes the integral equation of slowing down theory different from
the class of integral equations well studied extensively in mathematical physics, viz., the
Fredholm and Voltera equations. It turns out that in just two situations, the slowing down
equation can be solved exactly. Firstly, when the moderating medium contains only

hydrogen nuclei, with arbitrary energy dependence for cross-sections, an exact solution



can be obtained [2]. The second situation arises when the medium contains one
moderating element having energy independent cross-sections [7, 8].

In the fast energy range, presence of inelastic mode of energy degradation [9], and
the anisotropic scattering [2, 10] in the centre of mass system complicates the kernel of
the integral equation. However, in the energy range extending up to a few keV, the
complications introduced by these processes can be neglected.

In the next few sections, we introduce the problem of resonance absorption
through a discussion of the resonance cross-sections, the slowing down equation, etc,.
This will be followed by a review of the presently known methods of treating this
problem. Towards the end of the Chapter, we will be giving a brief summary of the
present work.

B. Resonance Cross-Sections:

The low energy resonances in the neutron cross-section of fertile elements can be
well represented by the single level Breit-Wigner formulae. The macroscopic scattering

and absorption cross-sections corresponding to neutron energy e are given by

[7+40 (e—e, )R/
(e—e, ) +(r/2)
T,

(e—e. ) +(/2)
Here, #, which equals A/ 27, denotes the reduced de Broglie wavelength. 7, 7, and 7,

(1.1) ds(e)=7r7%2gj +47R?

(1.2) o, (e)=#g,

are, respectively, the total, scattering and absorption width of the resonance and e, is the
resonance energy. R is the potential scattering radius of the nuclide and the statistical spin
factor of the nucleus g, equals (2J+1)/(21+1) where I and J, respectively, denote the spin
quantum number of the compound nucleus and target nucleus states. The energy
dependence of the scattering width is expressed as Ezn(er)(e/er)” ?_ but that of the total
width can be neglected for most of the resonances of importance [1]. With the
introduction of the quantities like peak cross-section oy, potential scattering cross-section

o, etc., defined by the relations:

(13) O-O = 47[7%2€rgj Fn (er )/r



(1.4) o, = 4R’

(15) O-op = [O-Oo-pgj I_‘n (er )/1—‘]1/2
(1.6) x=2(e—e)/T
the expressions for the macroscopic cross-sections can be rewritten as
r 1 2x
1.7 O'_x:o‘—n—_l_o- — 4+
r 1
1.8 ol\x)=0,—+~
(18) (=0t

The factor (e/e,)”” appearing in the expression for o, gives rise to the “/A”

variation of the absorption cross-section far away from the resonance. In the following
parts of the thesis, we will equate this factor to unity, assuming that the contributrion
from this “//v” absorption cross-section can be added separately to that due to the
resonance structure in cross-sections. All the other parameters appearing in the above two
equations are energy independent. The energy variable e appearing in equations (1.1) and
(1.2) is the energy of the neutron nucleus pair in the centre of mass system. If the nucleus
is assumed to be at rest before the collision, e is proportional to the energy of the neutron
in the laboratory co-ordinate system. The proportionality constant is related to the mass
number of the nucleus My, and equals My /(My+1). For heavy elements, the factor is very
close to unity and the energy variable appearing the expression for cross-sections can be
taken to be the neutron energy in the laboratory system. These formulae are applicable
when the medium containing the resonance absorbers is at absolute zero temperature.
When the medium is at any finite temperature, the nuclei are in motion and have an
energy distribution corresponding to the temperature of the medium. For a neutron
energy ey, the energy e of the neutron nucleus pair will vary with the thermal energy of

the nucleus. This effect is usually termed as Doppler-effect. Therefore, the cross-sections

are to be averaged over the energy distribution of the nuclei. The velocity (17)
distribution of the nuclei can be assumed to be represented by the Maxwellian
distribution function corresponding to the physical temperature of the medium [1, 2]. The

resonance cross-sections can be thus be defined as

(1.8 vol(e)=[o (o) -V| P07, 1) aV



Introducing the Maxwellian velocity distribution function corresponding to the

temperature 7,

(1.9) P(V,T)z(zj\;[k”’T j exp |- M, V? 2T ]

The temperature dependent cross-section can be written in terms of the familiar y and y

function [1]

(1.10) 0.(x)=0, 2y (x.8)+ 0, 2(xé) o,

(111) 0, (x)= 0, =y (x:8)

Here & is a parameter depending on the temperature of the medium, and is given by the

expression 77(4e,kT/My)"”. The wand y functions have only their integral representations

given by

1) ped)=s o Jewl (- peral
’ 2\/;700 1+y°

113 o= feol e a e

The non-availability of analytical expressions for these functions constitutes one of the
difficulties in the development of analytical methods for treating the slowing down
problems in presence of resonance absorbers [11]. It is useful to note that as T goes to

zero, ¢ tends to coand

(1.14) Lim,_,, 5 j; exp[—(x—y) & /4]1=6(x—y)

where o(x-y) is the Dirac delta function. Thus in the limit of zero temperature of the
medium, the y and y functions tend to the Lorentzian forms, and the cross-sections
assume the Breit-Wigner shapes given by equations (1.7) and (1.8).

C. The Infinite Medium Slowing Down Equation:

As was pointed out earlier, to determine the energy distribution of neutrons in an
infinite homogeneous medium, one has to start with the space independent transport

equation. For the case of a mixture of a resonance absorber and a moderator, the time



independent equation (assuming isotropic scattering in the centre of mass system) is
given by [1, 2]
Yy o) de' () de

(1.15) [£,()+Z,(e)+ 2, ole)=S(e)+ | () o W x

where @(e) is the neutron flux in unit energy interval at e. S(e) is the source of neutrons
appearing in unit energy interval at e, while 2, and ZX(e) are, respectively, the

macroscopic scattering cross-section of the moderator and absorber. 2,(e) is the

macroscopic absorption cross-section of the absorber. ¢, and & are, respectively, related

to the mass number of the moderator and absorber nuclides. For example, ¢ is given by

(My-1)*/(My+1)°. In writing equation (1.15), we have assumed that the moderator does
not absorb neutrons, and have an energy independent scattering cross-section. In the
resonance energy region, both these assumptions can be seen to be applicable to the
moderators of interest in reactor physics.

Fission neutrons are distributed in energy, the average energy is about 2 MeV.
These neutrons in a reactor medium do not contribute directly to the neutron flux in the
energy region of isolated resonances of the absorber. Further, it is well known that, in the
absence of absorption and far away from resonances, the neutron flux distribution has a
“l/e” behavior., Thus in resonance absorption theory one is left to solving the
homogeneous part of equation (1.15) with the normalization condition that the flux has a
“1/e” shape above the resonance.

The resonances of the absorber are said to be well separated if the separation
between two resonances is more than three or four times the average logarithmic energy
decrement. For such resonances, one introduces the assumption of recovery of the
asymptotic distribution between the resonances. This makes it possible to calculate the
neutron absorption rate in these resonances independently. The average separation (in
lethargy space for resolved resonances of U*® is of the order of 4.5, and is several times
the average logarithmic energy decrement 0.0084. Thus the assumption of the flux
recovery is indeed satisfied here. Over, a major part of this thesis, we shall be working

under this approximation.



Dividing by the number of absorber nuclei in unit volume Ny the homogeneous

part of equation (1.15) becomes

ela,

(1.16) lo,(€)+ 0,(e)+ 0, J0(e)= | %0(58’)) ie’,+e/fasc1>(e’) de'

Here we have introduced the quantity o;, which is the macroscopic moderator scattering
cross-section per absorber nucleus. That is o ,,=2;, /Ny

The resonance cross-sections take a simplified form in the variable x rather than
e. Therefore, it is natural to change the variable in equation (1.16) from e to x [12, 13].
To do this, we define the variable f{e)= e @(e). The equation for f(e) becomes

(1.17) [o,(0)+ 0, (e)+ 0, 1(e)= | 2=/ ) H @+ | 2L H de

. (1-a,) e . (1-a) e

It is clear that the form of f(e) far away from the resonance should be independent of e.

Changing to the variable x in equation (1.17) we get

(x+gnj)/am o_mf(y) 1+ r‘x/zer dy +
&, 1+ Fy/2e,4 1+ Fy/zer

(1.18) [aa(x)+as(x)+am]f(x):

X

+

”T/“ o.f(v) (1+Tx/2, )  dy
& 1+Ty/2e, ) 1+Ty/2e,

X

where we have introduced the quantities &, and ¢

-«
1.19 & =2e m
(1.19) n=26
-«

(1.20) £=2e,

The resonance absorber is a heavy element and « is close to unity. Therefore the
upper limit in the second integral term in equation (1.18), viz., (xt+g)/a, can be
approximated by

X+ &

(1.21) ~x+e

The accuracy obtained on employing the same approximation in the upper limit of the
moderator collision integral term may at first seem to be quite doubtful. However, the

moderator collision integral affects f{x) in a very minor way only. This happens because



&n itself is a large quantity due to the small value of &,. Further, over major part of the
range of integration of this term, f{x) has its asymptotic form. Comparisons of the
resonance integral obtained from the numerical solution of equation (1.18) with and
without the approximation

X+&

(1.22) maxte,
[04

m

have shown that the error introduced by this is negligible [14].

The ratio of the natural width of the resonance to the resonance-energy [7e, is
very small for almost all resonances in the resonance region. Therefore factors like
(1+7x/2e,) appearing in the integral terms of equation (1.18) can be approximated to

unity [12,14]. Thus one obtains the following simplified equation for f{x)

X+&, xX+e&

(123) [o.(x)+ 0, (x)+0,] /(x)= gL [o./(v)dy +é [o,00r()ay

As has been pointed out by several investigators [12,14,15], the implicit
assumption in deriving the above equation is the approximation of the integral operators

in the slowing does equation. For instance, the absorber collision integral is replaced as

“Co (e)D(ede 1°F
| are = [o,0nf(y)dy

X

(1.24)

The above replacement does not give the asymptotic value of the neutron flux
well below the resonance [15] It is well known that the magnitude of the neutron flux
well below the resonance differs from that above the resonance by a factor which equals
the resonance escape probability [2]. The modified form of the integral operator makes
the asymptotic values of the neutron flux above the below the resonance same. The error
introduced by this in evaluating the absorption rate in resonances in the epithermal region
has been well established and has been found to be negligible [14,15]. We shall base all
our further discussions on equation (1.23)

D. Resonance Escape Probablity And Resonance Integral:

Even though the quantity of prime interest is the neutron energy distribution in the
resonance energy region, the integral parameters like resonance escape probability and

resonance integral directly give the relevance of resonance absorption in reactor systems.



If the source of energy well above the resonance emits one neutron per second, the
resonance escape probability is given by

(1.25) p=1-4

where A4 is the fraction of neutrons absorbed in the resonance. It is given by

(1.26) A= [N, o, (e)D(e)de

Assuming that 4 is much smaller than 1, the expression for p can be written as [2]
(1.27) p=exp(—A)
Defining the effective resonance integral as

(1.28) I,=(%,) [ o,(e)D(e)de

resonance

where (£ ) is the average slowing down power of the mixture of elements, the

resonance escape probability becomes

(1.29) p=exp{— Ny [.}
€x)

When the source emits one neutron per second in an infinite non-absorbing homogeneous

medium, the flux distribution away from the source neutron energy becomes 1/(£X )e
[2]. When expressed in the lethargy variable it becomes the constant value 1/(£ 2> )[2].

Thus the effective resonance integral is so defined that on multiplication with the
asymptotic flux distribution in the lethargy variable it gives the absorption rate in the
resonance.

It is useful to normalize the source strength to (£ ) so that the asymptotic flux

distribution above the resonance is 1/e, in energy space or just 1 in lethargy space. If @(e)
is obtained from equation (1.16) with this normalization, the constant factor appearing in
the expression for /5 drops out. We shall be following this convention in the following

parts of the thesis. In terms of the quantity f{x) the expression for /.;becomes

(1.30) 1,=5) | q(x)f(x)%#

resonance



As was explained in the last section of the factor (/+/X/2e,) can be approximated
to unity. Using the expression for o given in equation (1.11), we find that
(1.31) 1, (§)=02°—er’ f w(x,8) f(x)dx

The absorption cross-section or equivalently the y function goes to negligible
values beyond the region of influence of the resonance. Therefore the limits of integration
in the above expression can be extended to cover the entire range of x. Introducing the

infinite dilution integral /,, which equals 7o,/ /2e,, the expression for Iy becomes

(1.31) 1,(0=" [w(x.) f()ds

It can be seen from equation (1.16) that in the limit of infinite dilution of the
absorber, @(e) approaches the 1/e form. Alternatively f(x) tends to 1 and the effective
resonance integral becomes I,. In obtaining the above result one should make use of the
fact that the integral of the y function is m [2]. Thus we are left with the problem of
evaluating the effective resonance integral from equation (1.32) and f{x) is obtained as the
solution of equation (1.23) with the condition that it goes to 1 when x — oo. In the
remaining part of this chapter, we shall briefly discuss the well known approximation
techniques developed for this purpose.

E. Well Known Approximation Methods for Evaluating the Resonance Integral:

Since the difficulty in solving the integral equation (1.23) is with the collision
integral terms, approximation methods have been designed to simplify them. The earliest
and those obtained from considerations of the nature of the resonance are due to Wigner
[16, 17]. They are known as narrow resonance (N.R.) and wide resonance (W.R.)
approximations.

1. Narrow resonance and Wide resonance approximations:

For the purpose of identifying a resonance as narrow or wide Wigner introduced
the concept of practical width 7'p. This is defined as the part of the energy region over
which the total resonance cross-section is more than the potential scattering cross-section.
Neglecting resonance potential interference scattering term from the expression for s, it

is readily seen that this definition for the practical width gives the expression [2].



S _

(1.32) r,=T 1

%),

However, this definition does not include the effect of the scatterer on the resonance. To
include this effect, Bell and Glasstone [1] defines practical width as the energy region
over which the neutron flux distribution differs from the unperturbed distribution by a

factor of 2 or more. They give the expression

(1.33) r,=r|—%
(o0,+0,)

The maximum energy that a neutron of resonance energy can lose in a scattering
collision with the absorber nuclide is e, (I-@). If I'p is much smaller than e,(/-), the
resonance is said to be narrow. It can be seen from equation (1.23) that the region of
influence of resonances of this type is much smaller than the range of integration in the
collision terms. That is, the number of neutrons scattered in to an infinitesimal interval de
at e is not affected by the presence of the resonance. For such resonances the integral

term P

x+&

(1.35) P=1 o)y
g X

can be simplified by substituting the asymptotic values of 65 and f{x), that is, 6p and 1,

respectively, inside the integral. Thus in the narrow resonance approximation, the integral
term becomes

(1.36) JI—

p

Because of the low mass of the moderator nuclide, it becomes immediately
obvious that this approximation will be quite adequate for the moderator collision integral
term. It has been pointed out by Goldstein [18], Seghal [19] and Ishiguro [14] that, with
scatters like oxygen, carbon etc, narrow-resonance approximation can lead to an
overestimation of resonance integrals of the low lying resonances by a few percent when
om 1s small. In any case, this approximation is excellent for scattering by hydrogen.
Introduction of narrow resonance approximation for the moderator collision integral term

reduces equation (1.23) to



x+&

(1.37) lo.()+0.(x)+0, ] f(x)=0, % [o.00/() v

It may be useful to point out an important difference between equations (1.23) and
(1.37). In the process of applying the narrow resonance approximation to be moderator
collision term, we have made use of the normalization condition on f{x). Therefore,
equation (1.37) appears as an inhomogeneous equation. On the other hand, equation
(1.23) is a homogenous equation and in obtaining its solution we have to employ the
normalization condition on f(x).

Even though the resonance absorbers of prime interest in reactor physics are
heavy elements, there are quite a few resonances especially over the higher end of the
resonance region for which the narrow resonance approximation can be applied [1,2].
This arises due to the fact that for higher energy resonances, e,(/-) increases and the
condition for the applicability of this approximation becomes more and more satisfactory.
The narrow resonance approximation to the absorber collision integral term also in
equation (1.37) gives the following expression for f(x):

c,to,

(1.38) fualx)=

o,(x)+0o,(x)+0,

The wide resonance approximation can be considered to be more or less the
opposite of the narrow resonance approximation. It corresponds to the situation when I'p
>> e,(I-c). In this situation it can be assumed that over the energy region from which
neutrons are scattered to an infinitesimal energy interval de at e, the scattering collision
density is constant. In other words the region of integration in the collision integral is
much smaller than the region of influence of the resonance. Thus the integrand does not
vary appreciably and can be taken outside the integral sign. Thus the wide resonance
approximation to the collision integral provides (with narrow resonance approximation
for moderator collision integral)

(1.39) JI—

p
and the following expression for f(x)

o

(1.40) Sy lx)= ;

o,(x)+o,+0,




With the above expressions for f{x) the effective resonance integral can be evaluated.

Substituting for 64 and o from equations (1.10) and (1.11), the resonance integral in the

narrow resonance approximation becomes

21
20 J(E11 77 a)

(1.41) [e];f'R (&)=—
) TN
where y; and a are given by

o, . o,
(GP+0m), 7/12(O-P+O-m)

J (5, g, a)is the function defined by Dresner [17] as

(1.42) 7=

17 x,&)dx
(1.43) J(E poa)=— | y(x.o)
25 pry(x,8)+ay(x,Q)
In the wide resonance approximation, the resonance integral becomes
217
(1.44) 1@ ==5(E15 a)
T Yo
where y. is given by
I
1.45 2=
(1.45) %=, T

The J (5, p ,a) function can be evaluated analytically only in the limit of zero
temperature. We shall give the resulting expressions for the zero temperature resonance
integrals later on.

2. Improvements to narrow resonance and wide resonance approximation:

(a) Improved narrow resonance approximation:

Spiney [30] and Chernic and Vernon [3] had developed formulae for the
resonance integrals which are improvements over that provided by equations (1.41) and
(1.44). Spiney’s improvement was on the narrow resonance approximation. He used the
fact that if resonance potential interference scattering is neglected and the condition

(1.46) L__ o
I' o,+to0,

is satisfied, equation (1.37) can be solved exactly. To see this let us rewrite equation

(1.37) with the explicit form of the cross-sections



(1.47) [o,w(éx)+o,+0,]f(x)=0, +— .HGO (&, x) + Up]f(y) dy
by defining the quantity y; for A=0, 1 and o by the equation

I +AT
(1.4%) ]/§=(/10_O-ig )( r+F :
P m

we can rewrite equation (1.47) as

X+&

(1.49) [+ 72w ()] e) == —+ b el

c,+o0, O, +0',,

It is seen from the definition of y; that when the condition given by equation (1.46) is

satisfied, 7=y . Hence it is natural to rewrite equation (1.49) as

X+e

(1.50) [+ 72w ()] (x) =—22—+ —f [+ 72wl (v) ay

c,to, 0,+0

X+&

=202 —71)8I[1+71 EDN ) ay

o, +0,

The last term on the RHS of equation (1.50) is considered as a perturbation and neglected
in obtaining the first order approximation to f(x). Then the first order approximation f; is

readily found to be given by

I )

It may be noted that f;(x) is same as the expression obtained in the narrow resonance
approximation. Substituting f;(x) for f{x) on the R.H.S. of equation (1.50) we get a second
order approximation to f(x). Denoting this by f>(x) we find that

o or (LT _wley)
(1.52) fZ(X)_1+712;1/(§,x)[1+0'm+0'f>(}/w n)g! 1+7/12!//(§,y)dy}

Spinney obtained the improved formula for the resonance integral with the above

approximation to f(x). It is given by [17]

I,

m O-P

[NR
(1.53) Ly (&) =1" (5){“ (7°2°_71)2g (5)}

(b) Improved wide resonance approximation:




Chernic and Vernon’s improvement was on the wide resonance approximation.
They considered fyr(x) as the first order approximation to f{x). That is,
~ 1
Ly y(6a)

A second order approximation to f(x) is obtained by substituting it for f(x) on the R.H.S.

(1.54) £()=fy 2 (x)

of equation (1.49). The second order approximation is then found to be

| o o, 17 1+7p(&y)
1.55 - § p— : ¢
(1.55) £%) 1+712W(§,x){0m+6p+0“m+0p5! 1+ 75w(8.y) ’

Since the above approximation is an improvement over the wide resonance

approximation, the integrand in the RHS of equation (1.55) may be expanded in a Taylor
series about x. Neglecting terms beyond third order in the series expansion, it can be
shown that the resonance integral is given by [17]
2 2w 2 2
(156) 1< (&)=1"" &)+ o] T2 | £ J ax t//(zé,y) d 1+7mzl//(§,y)
) ) z\o,+o,) b Lty y)dd [ 1+ pw(E.y)

The integral on the RHS of the above expression can be analytically evaluated

only in the limit of zero temperature. In this situation one gets [17]

2 2
(1.57) 1CV(OO):1;;R(OO)_£[ p jgz L s
‘ 3 O-m+O-P 7/17/0(7/1+70)

eff

It has been found that the improved narrow resonance formula derived by Spinney is
applicable to more situations than to which the above formula applies.

3. Intermediate resonance approximation:

Even though the above discussed approximations are applicable to certain
resonances, strictly speaking, they are only limiting situations. Further, there are many
resonances of absorbers for which these approximations are not applicable [2]. Goldstein
and Cohen [12, 21] developed the intermediate resonance (I.R.) approximation in which
they assumed that the collision integral term can be considered as a linear combination of
the approximate forms resulting from the narrow resonance and wide resonance
approximations. Thus they introduced an interpolation parameter A with which the
collision integral term is approximated to be

(1.58) PLR:ﬁ“PN‘R_i_(l_ﬁ“)PW‘R



The interpolation parameter A is to be determined. It can be seen that the limits A=1 and
A=0, respectively, produce the narrow resonance and wide resonance approximations.
Substitution of the expressions for Pyg and Py in to the above equation gives

(1.59) P y=05(x) f(x)+ Ao, — o f(2)]

Therefore, equation (1.37) gives

co,tAo,

O'G(x)+/10's(x)+a

m

(1.60) fralx)=

Goldstein and Cohen also considered an approach in which the intermediate resonance
approximation for f{x) is taken as a linear combination of fyz and fyz. However, the
former approach in which the interpolation parameter A appears in the expression for fz
in a non-linear fashion has been found to be superior to the latter [12]

Substitution of the expression for fiz (x) in the equation (1.32) gives [21]

1.R I() K m ﬂ' P s
e

Introduction of the expressions for o,(x) and og(x) gives

21—(;](5,1/]/3,61&)

(1.62) I;f;,R (é‘)z;y

where J and y; are respectively given by equations (1.43) and (1.48) and a; is given by

A Oop

1.63 =—
( ) aﬂ yi (ﬂ’o-P + O-m)

In the limit of zero temperature, the J-function can be evaluated analytically and we get
I
(1.64) 1 (&) =———
” VB -1

where S, and 77, are defined by

(1.65) B =1+7]

Ao,
1.66 =——20F
(1.66) m, (ZGP+Gm)

The limits A=1 and A=0, respectively, give the resonance integral in the narrow resonance

and wide resonance approximations. Thus, in the zero temperature-limit we get



I,

N

I
(1.68) Ie]};R( ) =L
0

(1.67) 155 (0) =

The procedure given by Goldstein [22, 23] to determine the interpolation parameter A is
the following. Equation (1.37) may be rewritten as
(1.69) l0.(x)+20,(x)+0,] f(x)= (0, + 20,)+ (2 Do, (x)f (x) ~ )]

xX+e

L lo. ) () -0 Jav
g X

A first order approximation to f{x) is obtained by neglecting the terms in the square
bracket on the RHS of the above equation. It is seen to be same as fz given by equation
(1.60). A second order approximation to f(x) is obtained by substituting f;z for f(x) on the
RHS of equation (1.69). It is found to be

1

m

(1.70) f 5= f,{H - {@ (o, (x)/ ()=o) +— j o,/ (v)- ap)dyH

Goldstein obtains an equation for A by equating the resonance integrals obtained with

these two successive approximations to f(x). Thus he obtains

X+e

Jo, (x)dxf J [0.0)/(v) =0, Jdy
(1.71) A=1-==2

0,00, (00, () 0,

The integrals in equation (1.71) can be analytically evaluated only in the limit of zero
temperature. Thus in the zero temperature limit we get
2 2
(1.72) 2=1-—Lani(s,)—-—MVP ! 1og(1+5 )
S, Bl =By - 277177/1
£

) VB -n;

When A is evaluated as the solution of this transcendental equation, the resonance integral

51

can be readily obtained from equation (1.64).



For many resonances of fertile materials of interest, the resonance potential
interference term in the scattering cross-section can be neglected. This happens because
of the smallness of 7, in comparison to I' [24, 25]. In this situation, the transcendental
equation (1.72) for A simplifies to

(1.73) A=1-2Beian {i}
& 25,

The expression for the resonance integral also gets simplified to

1
1.74 1'% (0) =2
(1.74) o (©) 3,

It can be seen from the transcendental equations (1.72) and (1.73) that the narrow
resonance and wide resonance limits of 4, viz., 1 and 0, respectively, are obtained in the
limits & tending to oo and 0.

It is natural to seek the consequences if the equation for A is determined by
equating the resonance integral obtained by the first order approximation and, say, the
third order approximation. Dyos and Keane [26] have investigated this problem in the
simplified situation when the resonance potential interference scattering is neglected.
They have observed that the convergence of the scheme of determining A by equating
resonance integral in the first order approximation to that obtained in higher order
approximations in rather slow when 7, > 7.

The major problem in the intermediate resonance approximation has been found
to be the range of the interpolation parameter when resonance potential interference
scattering is present [14]. Usually, one expects the actual resonance integral to lie
between those calculated in the limiting narrow resonance and wide resonance
approximations. But when resonance potential interference scattering is present, for
certain situations depending on the value of o, and the relative magnitudes of 7, and 7
this does not happen. The actual resonance integral goes outside the limits given by the
narrow resonance and wide resonance approximations. Consequently, the interpolations
parameter goes outside its expected range between 0 to 1 [14]. Therefore, Goldstein’s
procedure becomes an extrapolation rather than an interpolation. Further, the

transcendental equation (1.72) for determining A is somewhat complicated and gives rise



to more than one solution on the real axis and sometimes just one solution. The
changeover from interpolation to extrapolation and the difficulty in determining the roots
of the transcendental equation have been discussed in detail by Mikkelson [27].

The generalization of Goldstein’s method of determining A to include temperature
dependence of resonance cross-sections is not straightforward. Because of the
complicated form of the cross-sections, one is not able to get an equation for A as in the
case of zero temperature. However, with certain approximations, Goldstein [21, 28]
evaluates the integrals in equation (1.71) and provides an equation for A in terms of the
tabulated functions like J(& B a). He has shown that the resulting equation for A4
reproduces the equation (1.72) in the zero temperature limit. But the possibility of solving
this general transcendental equation for all situations has not been clearly shown. Many
authors have investigated the possibility of using the interpolation parameter A
determined from zero temperature calculations directly in the temperature dependent
resonance integrals [29,27,14]. That is, if A is evaluated from the transcendental equation
(1.73), the temperature dependent resonance integral is given by

(1.75) I (&) = 3iJ(g:,l/ )

2
Ty,

where ¥ is given by equation (1.48) and J(& f) is the function defined as [17]

(1.76) J(EfB) = j%dx

Of course, if resonance potential interference scattering is included and A is obtained
from equation (1.72), the expression for the resonance integral given by equation (1.62)
will have to be used.

It was observed by Goldstein [15] that if resonance potential interference
scattering is neglected, the first order approximation to f{x) becomes symmetric about the
origin. It can be readily seen from equation (1.49) that f(x) is a symmetric function only
when y/=y.. However, the second and higher order approximations show the expected
behavior of f{x) [15,30]. Pomeraning and Dyos [31] tried to remove the symmetric nature
of the first order approximation by introducing one more interpolation parameter. They

have shown that this improves the accuracy of the intermediate resonance approximation.



Goldstein [18], Seghal [19] and Ishiguro [14] have generalized the intermediate
resonance approximation to remove the narrow resonance approximation for the
moderator collision integral by introducing two interpolation parameters.

We feel that when generalizations are attempted the intermediate resonance
approximation is not free from difficulties. Nevertheless, the intermediate resonance
approximation is an important step in the development of techniques of solution to the
resonance absorption problems.

F: Other Methods Of Solving The Slowing Down Equation:

In the previous section we considered some of the methods which are specifically
aimed at evaluating the resonance integral. In this section we shall briefly outline some
of the general attempts in solving the slowing down equation.

1. Weinberg and Wigner — Corngold equation:

An altogether different approach to the solution of the slowing down equation was
given by Weinberg and Wigner [32]. They considered neutron absorption as a negative
source and reformulated the slowing down equation using the solution in the non-
absorbing situation as a Green’s function. Equation (1.16) with a mono-energetic source

emitting neutrons of energy e* may be rewritten as

ela

(1.77) [O'S(e)-I-O'm]CD(e):5(6—6*)—Ga(6)®(6)+ I (l—a) o

Now let us denote by g(e,e*) the solution of equation (1.77) in the situation when the

"o,®(¢) de ‘{o,dle) de
In=\C) d€ | J'_ @
(l1-a) ¢

absorption cross-section is zero. The solution g(e,e*) is also known as Placzek funcftion
[2,33]. The principle of superposition of the solutions of linear equations may be

employed to reformulate equation (1.77) as
(1.78) ®(e) = g(e,e*)— [ o,()D(e)g(e,¢) de’

An important point to be noticed in this formulation is that the above integral equation for
CI)(e) is of the Volterra type. However, it is very complicated because its kernel is the
Placzek function having discontinuities in all orders of derivatives [2]. Therefore, it is
necessary to resort to approximation techniques for its solution. It has been pointed out

that it is quite suitable for obtaining solutions by iteration [2,33]. Proceeding on these



lines, Weinberg and Wigner obtained a correction factor in the expression for the
resonance escape probability given by the narrow resonance approximation.

Subsequently, using Laplace transforms, Corngold [34] gave a rigorous and more
general formulation of the problem in terms of Green’s functions. Then he set up a
variational principle for the resonance escape probability in terms of the neutron flux and
its adjoint function and showed that quite accurate estimates of this parameter could be
obtained with simple trial functions. Further, using this variational approach he estimated
the effects of the assumption of asymptotic flux recovery between neighboring
resonances of the absorber [35]. To employ analytical treatment of this problem,
Corngold used only representative forms of the resonance cross-sections such as
rectangular shapes in the lethargy space and hence the conclusions drawn are only of a
general nature.

2. Synthetic kernel approach to the solution of the slowing down equation:

There had been a continuing attempt in developing approximate forms of the
kernel of the slowing down equation so as to get analytical solutions. Three well known
approximate kernels, also known as synthetic kernels, are due to Fermi [36,2], Wigner
[2,32] and Goertzel and Greuling [37]. The synthetic kernels reduce the slowing down
dequation to Volterra equations whose solutions can be analytically obtained. These
kernels are derived under the approximation that the collision density is a slowly varying
function of lethargy variable and they contain the first two moments of the slowing down
kernel as parameters. This approach to the solution of the slowing down equation has
been improved by Stacey [39] by redefining the parameters of the approximate kernel.
The main aim is to enlarge the applicability of the theory to situations having at lease
weak resonances in cross-sections. The improvement by Yamamura et al [39,40] to
include higher moments of the slowing down kernel has been found to destroy the basic
analytical nature of the method. However, it has provided very fast algorithms for the
computation of fast reactor spectra. Recently, Yamamura et al [41, 42] have developed a
scheme in which the parameters of the synthetic kernel are themselves functions of the
solution of the equation and to be obtained in an iterative manner. The present status of
the synthetic kernel approach is that in the simplest form it can not be applied to the

resonance absorption problem while the sophisticated versions though accurate require a



good amount of numerical work. The extension of this formalism to include anisotropic
scattering in the centre of mass system, inelastic mode of energy degradation, time
dependence, etc. have also been attempted. These are summarized by Stacey in a recent
review article [43].

G: Summary of the Present Work:

The work presented in this thesis represents a new attempt to solve the slowing
down equation when the resonance cross-sections can be represented by the single level
Breit-Wigner formulae. The idea we have exploited is that the discontinuous nature of the
kernel of the slowing down equation can be removed by going over to the Fourier
transform space. It may be appropriate to remark here that similar approach was used for
solving the neutron transport equation in finite systems in single as well as multi-
dimensional situations [44, 45]. Our method uses the fact that the Fourier transforms of
and y functions have very simple analytical forms and thus circumvents the difficulties
arising from the non-availability of the analytical expressions for the temperature
dependent resonance cross-sections. Further, the method is specifically aimed at
obtaining the integral parameter of interest, viz. the resonance integral, directly rather
than first obtaining the neutron flux distribution in the resonance and then calculating this
parameter. This is achieved by carefully defining the unknown function in the transform
variable.

Chapter-II is devoted to the development of the most important ideas of the
present work. In order to simplify the treatment we introduce two assumptions, viz. that
the resonance potential interference scattering can be neglected and that the moderator
collision integral can be treated in the narrow resonance approximation. Thus we treat
equation (1.47). Introducing the Fourier representation of the discontinuity factor we
convert equation (1.47) to a Fredholm integral equation of second kind with a continuous
kernel over the interval (-o0 o) [46]. In this process, the unknown function Gk, <&) in the
transform variable & is defined such that its value at the origin (k=0) is directly
proportional to the resonance integral.

Thereafter the main task is to solve this integral equation and obtain the resonance
integral. However, a simplification arises in the limit of zero temperature. It is shown that

in this limit, the kernel of the integral equation becomes a Green’s function of a second



order differential operator and therefore the equation for ffk,0) can be reduced to a
second order differential equation [46, 47]. The narrow resonance, wide resonance and
intermediate resonance approximations are shown to correspond to approximating a
function g(k, &) depending on the resonance parameters by various constant values. Next
we develop a WKB solution to the differential equation and obtain a new expression for
the resonance integral [47]. This formula is applied to some of the typical resonances of
U*® nucleus in a homogenous mixture with hydrogen. The numerical values of the
resonance integral are compared with those obtained by other methods.

Subsequently we concentrate on the temperature dependent problem [46]. Here it
is found that the kernel of the integral equation contains a factor exp (-k’/&°). Therefore
the equation can be solved by employing the Gauss-Hermite quadrature formulae except
for large values of £ which correspond to low temperatures. So the zero temperature part
of the solution is separated and the temperature dependent correction alone is obtained
with the use of the quadrature formulae.

Earlier we have seen that in the classical approximations, viz., the narrow
resonance, wide resonance and intermediate resonance approximations, the temperature
dependent resonance integral is proportional to the resonance integral function J(& f).
Therefore, our method of solving the integral equation of slowing down theory gives a
procedure to evaluate this function when we make suitable approximations in the
equations [46]. By comparing the J(¢& f) function calculated by this method with the
numerical computations over a wide range of & and £ values, we obtain a fairly good
estimate of the accuracy of this method. Finally, the method is applied for evaluating the
Doppler coefficients of some of the resonances of U** nucleus in a homogeneous
mixture with hydrogen. These results are compared with those obtained by the
intermediate resonance approximation and Monte Carlo calculations.

In Chapter III, the method is generalized to include resonances potential
interference scattering [48]. Thus we treat equation (1.37) when o, and o; are given by
equations (1.10) and (1.11). For the temperature dependent problem it is shown that an
integral equation for a function related to 6(k, &) can be obtained. Again we consider the
integral equation in the zero temperature-limit and obtain a second order differential

equation for @(k, ). Applying the WKB method to obtain the solution, a new expression



for the resonance integral including the resonance potential interference scattering effects
is derived. We then analyze the intermediate resonance approximation through the
solution of this differential equation. Introducing two interpolation parameters a set of
two coupled transcendental equations are obtained. These equations are derived by
equating H(k,c0) and its derivative at k=0 obtained in two successive orders of
approximation. It is found that these equations are easier to solve numerically compared
to Goldstein’s equation and yield fairly accurate values for the resonance integral. This
discussion is concluded with a comparison of the numerical values of zero temperature
resonance integrals of U*** nucleus.

Because of the nature of certain terms present due to the inclusion of resonance
potential interference scattering, we notice that it is not appropriate to employ the Gauss-
Hermite quadrature formulae for the solution of the general integral equation. Therefore,
we examine the approach wherein the solution is expanded in terms of a set of
polynomials related to Hermite polynomials. It is shown that the matrix elements of the
resulting system of equation determining the expansion coefficients can be evaluated
using suitable recurrence relations.

So far we were working under the assumption that the resonances are sufficiently
separated in energy and used the unperturbed neutron flux distribution viz. the ‘1/e’
distribution above the resonance. When the resonances of the absorber are closely spaced,
the presence of one resonance perturbs the flux distribution in the other resonance. This
interaction between the resonances leads to a reduction in the overall resonance
absorption and modifies the Doppler broadening effect considerably. The effect of
interaction is of second order in magnitude and obtaining it even from a direct numerical
solution of the slowing down equation would be difficult. This is because the Doppler
broadened functions are also to be computed numerically.

In Chapter-1V, we generalize the Fourier transform method for an estimation of
these effects [50]. In the energy region of interfering resonances, the scattering and
absorption cross-sections of the absorber are given by superposition of the cross-sections
for individual resonances. For the case of two interacting resonances, the problem of
obtaining the resonance integral (including the interaction effect) is reduced to the

solution of a Fredholm integral equation. In the zero temperature-limit, the equations in



the transform variable are shown to reduce to two coupled second order differential
equations. A method of solving these equations is developed in the WKB approximation
and applied to the two interfering low-energy resonances of Th**? [50]. Thereafter we
consider the temperature dependent problem. It is well known that in the narrow
resonance approximation the resonance integral including the interaction effect is
proportional to be generalized J-function [51]. We make suitable approximations in the
integral equation so that its solution at k=0 is proportional to this function. Employing the
Gauss-Hermite quadrature formulae to obtain the solution of the resulting integral

h?*? resonances. It is seen that the

equation, we calculate the Doppler coefficients of T
interaction between the resonances leads to destructive interference and consequent
reduction in Doppler coefficient for low temperature.

In Chapter-V we develop the Fourier transform method relaxing the assumption
of narrow resonance approximation for the moderator collision-integral. There is an
important difference between equation (1.23) to be treated in this situation and those
encountered in earlier chapters. Equation (11.23) is a homogenous equation in f(x) and is
to be solved with the normalization condition that f(x) goes to unity when x—co. In the
equations treated earlier, together with the narrow resonance approximation for
moderator collision integral, this normalization condition had been employed and
therefore they appeared as inhomogeneous equations. In converting the initial value
problem posed by equation (1.23) together with the normalization condition to an integral
equation in the Fourier transform space, we find it necessary to introduce elementary
ideas from the theory of distributions [52]. The situation encountered is similar to that
occurring in Case’s method of solving the neutron transport equation in plane geometry
[53]. In later part of this Chapter we consider the integral equation in the limiting
situation of zero temperature and show that a second order differential equation can be
obtained.

In conclusion, it may be said that we have given a new formulation of the problem
of resonance absorption in reactor physics. Using Fourier transforms, we convert the
slowing down equation with resonance cross-sections to Fredholm integral equations of
second kind. The equations reduce to second order differential equations in the limit of

zero temperature. The important feature of our method has been the reduction of the



slowing down integral equation with discontinuous kernel to equations of the type well
studied in mathematical physics. The methods attempted to solving the equations in the
transformed space do indicate the applicability of this approach to the evaluation of
resonance integrals accurately.

XXXX



CHAPTER-II
FOURIER TRANSFORM METHOD FOR EVALUATING

RESONANCE INTEGRALS - PART |

In this Chapter we shall develop some of the salient features of the Fourier
transform method for evaluating resonance integrals. For the sake of simplicity it will
be assumed that the resonance potential interference scattering can be neglected and
that the moderator collision integral can be treated in the narrow resonance
approximation.

A: Derivation of the Freedom Integral Equation:

We shall proceed with the temperature dependent cross-sections and show that
the slowing down equation can be transformed to a Fredholm integral equation [46].
Introducing the constant A defined as

Op

2.1) A=

o, +0p

equation (1.49) can be rewritten as

(2.2) L+ 2w (x 0)]f 0=~ A)+§T[1+yiw(y,f)]f(y)dy

Our aim is to obtain the resonance integ:al defined din terms of f(x) in equation
(1.32). As have been already emphasized, one of the difficulties in dealing with the
above integral equation is the doubly discontinuous nature of its kernel. To remove this
we introduce the discontinuity factor,

(2.3) H(X,y,e)=0, y<x
=1, X<y<X+e¢
=0, y>x+¢
Using H(x,y,¢), equation (2.2) can be written as
A o0
(2.4) bty o]t 0=0-m+= [ e Zv oy f () dy

H(x,y,&) can be expressed as

X+&

(2.5) H(x Y, &)= ja(y—z)dz

where &y-z) is the usual Dirac delta function. Using the Fourier integral representation

of the delta function [52] we get



H(x,y, &)= Tdk'v(k',g) exp[ik'(y —x)]
where B

__aike
(2.6) vk, )= 3= )
ike
The fact that this is indeed a representation of the discontinuity factor can be seen by

considering it as a contour integral. Substituting for H(x,y,¢) in equation (2.4) we get

2.7) L+ 72 w)t(x)=0-A)+ AT dk'v(k',g)e”“% Teik‘Y(1+ y2w )t (y)dy
Defining the Fourier transforms h h
@9 0, )= [€™ £y (x.) b
T —00

1 T ikx
(2.9) F(k)=5:[c ™ f (x) dx
equation (2,7) can be rewritten as
(2.10) Lo 72w a)f (0= A+ A dk'v(k, )e ™ [F k) + 720k, )]
Fourier transformation of this equation gives h
(2.11) F(K) + 72 0(k, &) =(1— ASK)+ Av(k, &)|F (k) + 720(k, &)]

In obtaining this relation between F(k) and &(k,&) we have used the Fourier integral
representation of the delta function. The above equation can be rewritten as

i —yev(K,e) _ . @a-A
(2.12) P ke " Ak )

It is now appropriate to look closely into the definition of the transforms F(k) and

5(K)=5(k)

Ak,&). We have seen that f(x) goes to unity as x — +oo. Therefore its Fourier transform
F(k) will contain a delta function as has been obtained in equation (2.12).

The transform &k,&) is of particular interest because at k=0 it is proportional to
the resonance integral. Equation (1.32) shows that
(2.13) I (£)=21,0(0,¢)
Thus it is natural to convert the relation (2.12) between F(k) and &k,<) into an equation
in Ak,&). Thereafter the resonance integral can be obtained directly from its solution.
To eliminate F(k) from equation (2.12) we need one more independent relation between
F(k) and Ak,&). If we denote by w(k,&) the Fourier transform of the y function, the

application of the convolution [52] theorem to equation (2.8) gives



(2.14) (k&)= [F() i (k—k',&)dk
Changing the variable to k’ in equation (2.12), multiplying by y(k-k',&) and
integrating over k™ we get

[ e 21 4 LT | P
(2.15) 9(k15)+:[c‘//(k—k ,$) {m}e(k &) dk'=w(k, &)

To complete the derivation of the integral equation we have to evaluate the
functiony (k,&) . The w function was defined as a convolution integral in equation

(1.12). Therefore its transform can be obtained with the use of the converse of the
convolution theorem [51,52]

(2.16) v7(k,§)=%e><p(—|kl)exp(—kz/fz)

Here (1/2) exp(—|k|) and exp(—k?/£?) are respectively the Fourier transforms of the

Lorentzian and Gaussian functions. Substituting for & (k —k', &) in equation (2.15) we
find

(2.17) o(k, &) +% jexp[—|k —k- (k=k)? /&g, &) O(K', &) dk’

1
=Eexp[—|k|— kz/(fz]
The function g(k,¢) is defined as

2_p,2
1-Av(k,e)
Thus the problem of solving the slowing down equation and evaluating the resonance

integral (including its temperature dependence) has been reduced to the solution of the
integral equation (2.17). It is a Fredholm integral equation of second kind with a
continuous kernel over the interval (-o0,00). It may be remarked that in the present
method we have circumvented the difficulties arising from the non-availability of
analytical expressions for the Doppler broadened functions. The fact that the  function
has a simple analytical expression in the Fourier transform space has been exploited in
our approach.

The flux distribution in the resonance, if required, can be obtained from the

inverse transform:

@19) 10y (0= e ok £k



Before discussing the integral equation (2.17) further, we shall analyze the
limiting zero temperature situation.

B. Resonance Integrals in the Zero Temperature Limit:

In Chapter-l we have seen that most of the analytical work on resonance
absorption problems is limited to the zero temperature situation. This becomes possible
due to the Lorentzian form of the Breit-Wigner cross-section. In the present method the
integral equation gets simplified and a good amount of work can be carried out
analytically.

(i) Derivation of a differential equation for 6

When the temperature of the medium goes to zero, the parameter &—oo.

Therefore, equation (2.17) becomes

(2.20) o(k, ) +% Texp(—lk —k])g(k',¢) (K, ) dk'=%exp(—|k|)

Since the kernel of this integral equation happens to be the Green’s function of a
differential operator it can be reduced to a differential equation. That is [54],

d? 1
2.21 — -1 |=expl-|k=k7)=—5(k =k
(2.21) [dkz jz p(-[k —kT)=—5(k k)
Applying this operator on equation (2.20) we get
2

(2.22) (%—1}9(&00) —g(k,£)0(k,©) =—0(k)
This may be rewritten as [46,47]

d?e
(2.23) ~[1+g(k, &)]6(k, 0) == 5(k)

dk®
Since the integral equation has been converted into a differential equation we have to

provide the boundary conditions on &k,o). They are provided by putting k=20 in
equation (2.20),

(2.24) O(k,0)=0, k==
Thus the problem of evaluating the zero temperature resonance integral has been

reduced to the solution of a differential equation. Earlier, Spinrad, Chernic and
Corngold [55] had barely outlined the possibility of deriving such a differential
equation. But at the time of developing the method published in reference [47] we were
completely unaware of the aforesaid work.



The delta function ion the R.H.S. of equation (2.23) shows that déddk is
discontinuous at k=0. The discontinuity can be obtained by integrating the equation

near the origin:

(2.25) 49, _dé =-1
dkl, dk|,_
Thus the problem reduces to the solution of the homogenous differential equation
d?e
(2.26) e [1+g(k,£)]0(k,0) =0
in the open interval (0,20 and (-20,0) satisfying the boundary condition
(2.27) O(k,0) >0, as k >+ (a)
From the definition of &k,~), we know that it is continuous at k=0, that is,
(2.28) Ok, )|, = O(k,»),  (b)
Finally we have
déo déo
2.29 — —— = C
(2.29) & L ©

Before attempting the general solution, we shall consider some limiting situations [47]

(i) Solutions of the differential equation in certain limiting situations:

While discussing the intermediate resonance approximation we pointed out that
the narrow resonance and wide resonance approximation can be obtained in the limits

e—owand 0. As e, the function 1{k,&) —0. Thus we get

(2.30) gN.R(kvg):7/12
The differential equation (2.26) becomes
d?6
(2:31) dk'\;'R _ﬂlz Oy r(K,0) =0
with B2 =1+ yZ. The general solution of this equation is
(2.32) Oy r(k,0)=C, exp(-Sk) + C_exp(+Sk)
where C. are consonants. ér Satisfying the boundary conditions (2.27) is given by
(2.33) O n (k,0)=C, exp(~k) , k >0

eN.R(k’OO)Zcf eXp(_ﬂlk) , k<0
The other conditions (2.28) and (2.29) give
(2.34) C, =C_

C_+C,
B

1




which yield

1
(2.35) C, =C_ =2_ﬁ’1
Finally
1
(2.36) 9N.R(k!oo):2_ﬂle)(p(_ﬂ1|k|)

The resonance integral in the narrow resonance approximation becomes

(2.37) 157 (00)=21,6, »(0,) :,IB_O
1
and is found to be same as that given in equation (1.74).

As £—0, the function k,&) —1 and we get

2 2
- Ay
2.38 k,g) =t —1=
( ) gW.R( £) 1- A

This is same as the quantity »; according to the definition of y? given in equation

(1.48). Thus we get

d?4
dTV\é'R_ﬂoz By (K,0) =0

where B7=1+yZ. Solution of this equation is

(2.39)

1
(2.40) HW.R(k,oo)=2—ﬂ0exp(—,80|k|)
and
|
2.41 IR (00)=21,8, »(0,00) = -2
(2.41) e () (0,0) 1,

0
which is again the expression obtained earlier. Further the function g(k,&) can be

rewritten as

Av(k,e)
1- Av(k,é)
thus when »/ = »2, we again obtain the narrow resonance limit. Earlier we have seen

(2.42) g(k,&) =1+ (i -72)

that this is same as the condition I, /T = o, /(o + o,,) observed by Spinney [20].

The intermediate resonance approximation corresponds to the approximation

(2.43) gir(k, &) = 7]
Therefore we have

1

(2.44) eI.R(k’OO):Zﬂ

exp(_ﬂz |k|)

and



|
2.45 ||f'fR o0 :2|00I.R 0’00 =_0
(2.45) efi (%) (0,0) ;

A
where B2=1+y2. The constant »> or S, is as yet unspecified. The procedure given by

Goldstein can be used to derive a transcendental equation for f,. Details of this

derivation will be given in the next Chapter where we shall consider the general
problem including resonance potential interference scattering.
(iii) WKB approximation for &Kk, o)

Equation (2.26) being a second order differential equation with a variable

coefficient can not be integrated exactly. One of the powerful methods for treating this
equation is the WKB method [56]. We shall derive a new expression for lez by
obtaining a WKB approximation to &Kk, ). Using equation (2.42), equation (2.26) can
be written as

d249_ 2 ) —(yZ —y? At
o B oK, o) — (7, 700)1_Av(k,8)

It is seen that the coefficient of Ak,«) in the last term goes to zero as k — =+o.

(2.46) (K, 0) =0

Therefore the asymptotic form of &k,«) is same as & r(k,0). To include this fact, we

attempt a solution

(2.47) A(k,0)=C, exp —,B1|k|+]38+(k')dk} k>0

k
=C_exp| - A+ IS(k')dk} k<0

The boundary conditions (2.27)_require

(2.48) [s*(k)dk' >0 as koo
k

k
_[S’(k')dk'—>0 as k — —oo

This implies that
(2.49) S*(k")— 0 (faster than 1/k) as k — oo
The continuity condition (2.28) gives

(2.50) C, exp[— ﬁl|k|+Ts+(k')dk} =C_ exp[— BiK|+ TS‘(k')dk}

The discontinuity condition (2.29) gives



251) C_[p+ S(O)]expﬁS(k')dk} —c.|-a —S*(O)]expﬁs*(k')dk} -1

Solving these equations, we get

1 7 + 1 1

(2.52) C, = TS 0750 exp_—ls (k )dk}
1 e e

C = TS OTERG exp_—J;S (k )dk}

Substituting in equation (2.47), we obtain

k _
L D —ﬂlk—js*(k')dk' , k>0
L 0

ex
28,+S°(0)+S (0)

= L ex
25,+S7(0)+S(0)

Thus &k,0) has been expressed in terms of S*(k). The resonance integral becomes

(2.53) 0(k,0) =

0
p| + sk —[s (k)dk'| , k<0
L k

21
2.54 I = 0
(2:54) 1) = s )5 )
We now substitute from equations (2.53) in the differential equation (2.46) and get
_ds* . . Av(k,e)
2.55 F—+28S " (K)+[S* (K =0f - ) ———=
(2.55) G 24 (k) +[S™(K)I" = (1 %m)l_AV(k’g)

The upper sign stands for k>0 and the lower sign for k<0. Since the above equations
are nonlinear equations of the Ricatti type they can not be integrated exactly. We shall
obtain their solutions by a perturbation expansion. The first order approximation is
obtained by neglecting the quadratic terms in the equations. Integrating the resulting
equation and using the boundary condition (2.49), we find

Av(k', ) dk’

(2.56) SI(k) = (7% - 72) [ exp[-2/3,(k'k)] T Av(K.)

. 2 o\ , Av(K', )
Sr(k)=(r - 7w)_fooexp[+2ﬂl(k —k)]m
These solutions will be sufficiently accurate when |S(k)|<<2f The second order
approximation is obtained by substituting S; (k) in the quadratic terms in equations

(2.55). Integrating the resulting equations we get

Av(k', )

(2.56) 57 (k) = [exp[-2/,(k—K)]| (7 - 7i)m

- sz(k')}dk'



Av(k',¢)

HOBY exp[—zﬂl(k'—k)]{mz RO R

—sz(k')}dk'

Even though this process can be obtained, we shall restrict our further discussions up to

the second order approximation. We find that the real and imaginary parts of

Av/(L—Av) are respectively even and odd functions. Therefore, S (k) and S (k),
the real and imaginary parts of S (k) (n=1,2) will also have the property
(2.58) Sar(K) =455 (k)

Smi (K) ==5;, (k)

Thus in the second order approximation (2.54) becomes

I
2.59 g (0) =2
(2.59) et (%) 3.
where
(2.60) B =P +55:(0)

Substituting for S;" (k) in equation (2.57) and performing one integration by parts in the

second integral, we get

(261) S;_ (0) _ (7/12 . 7/; )J'exp[_zﬂlk]l_A':(:((’lj)g) dk + (]/1 2_ﬁ700) X

XH [ exp[—Z,Blk]%dk} —2f %dk | exp[—2ﬁlk‘]%dk

The integrals in this equation can not be evaluated analytically. However, we find that
the integrands can be expanded in a convergent power series in A. By definition A is

less than unity and so also is the magnitude of the term 1{k,). Therefore we write

Av(K.e) &
(262) m—éA 14 (k,g)

Substitution into equation (2.61) gives

(2.63) S;(0) :@i A"l (c)+ (7/128787;3:)2 v

1 n=l .

xHi A1, (c) +} _23 A"S ATV, ()

where c=&/2; and



(2.64) I,(c)= Texp[—k] v"(k,&)dk

00 0

V. (c) :j p" (k,g)dkjexp[—k'] v (k' &) dk'

0 k

On commuting the resonance integrals we have found that it is adequate to keep terms
up to A3, Therefore S, (0) can be written as

(265) S:(O) :@i A" Rln(C) + (]/128787;53)2 .

1 n=l .

x[A?{RIZ = 112 = 2RV, |+ 2A°*(RI, x RI, — 11, x I, = RV,, = RV,,

Here RI, and Il, respectively denote the real and imaginary parts of I,(c). Similarly,
RVnn stands for the real part of V. The required integrals to obtain S, (0) have been
evaluated in Appendix-I

The expression for éKk,«) in the second order approximation is given by
equations (2.53) and (2.57). S, (k) can not be evaluated analytically for non-zero
values of k and obtaining &k, ) from these equations would involve lot of numerical

work. However, an expression which coincides with this function at k=0 and hence

reproduces the resonance integrals is

1
(2.66) O (K, 0) = >

eff

exp(—fy k)

It can be seen from the previous sub-section that this form of &k,0) is very much
similar to that obtained in the intermediate resonance approximation. In fact it

corresponds to replacing g(k,&) by
(2.67) g(k,&) = fy -1

(iv) Comparison of various methods:

Here we shall establish the accuracy of the above derived expressions for the
resonance integral by numerical comparison. In this section we shall also include
results obtained from the other formulae derived in Chapter-l1. We choose the first ten
low energy resonances of U?® nucleus. The resonance parameters used in all

calculations are given in Appendix-Il. Tables-1 and Il respectively give the zero



temperature resonance integrals in a homogeneous mixture of and hydrogen when the
nuclear concentrations are such that N,:Ny = 1 and 5.

The last column in the tables gives resonance integrals obtained through a
numerical solution of equation (2.2). The numerical scheme is the same as that
employed by Horner and Keane [57,58]. The integral appearing on the RHS of equation
(2.2) is approximated by Simpson’s formula. This enables one to evaluate f(x) at
equidistant points through a recursion formula if it is assumed to be known for very
large values of x. In obtaining the results we assumed that f(x) =1 for x > 1000. Once
f(x) is known at many equidistant points, they can be used to evaluate the resonance
integral numerically.

The resonances chosen are typical in the sense that the first three are usually
categorized as wide resonances where as the last two are said to be narrow resonances.
The resonances at energies 102 and 192 eV ae usually labeled as intermediate
resonances because the resonance integrals calculated in the narrow resonance and
wide resonance approximations differ considerably.

From this table it is seen that the improvements on narrow resonance and wide
resonance approximations introduced by Spiney and Chernic and Vernon are good only
for those resonance belonging to the respective classes. For the resonance belonging to
the intermediate class, the narrow resonance and wide resonance approximations give
results which differ approximately by a factor of 2. The intermediate resonance
approximation of Goldstein gives good results for all the resonance. The analytical
expression for the resonance integral obtained by the WKB method is found to give
accurate results. It is found to be applicable to resonance belonging to narrow, wide and
intermediate classes. Thus we have been able to bridge the gap between the limiting
narrow resonance and wide resonance approximations through this analytical
expression.

C. Temperature Dependent Resonance Integrals:

In this section we shall give a method for solving the integral equation (2.17).

(i) Solution of the integral equation for &k,<&)

The kernel of the integral equation for &k, &) contains a factor exp[- k? /£?] and
it suggests the use of Gauss-Hermite quadrature formulae for approximating the

integral terms [61]. The quadrature formula may be written as



(2.68) fwf(k)exp(—kz)dk ~ iwj f(k;)

where k; are the roots of the Hermite polynomials of order N and W; are the
corresponding weights [60]. The above equation is exact if f(k) is any arbitrary
polynomial of degree 2N-1. For other functions it gives an approximation to the integral
in the sense of approximating f(k) to a polynomial degree 2N-1 [60].

We notice that in the zero temperature limit £&—><0 and the quadrature formulae
can not be employed at all. Therefore we separate the zero temperature part of the

solution and write [62].
(2.69) ok, &)= eXp[— %J[H(KOO) +o(k, )]

The quadrature formula will be used to determine ¢(k,&) alone. Thus for small values
of & which corresponds to higher temperatures the quadrature formula gives a good
approximation to ¢(k,&). When & large ¢(k,&) is quite small and contributes very

little to the resonance integral although the method of evaluating it may be inaccurate.
Using (2.69) in equation (2.17) we get

(2.70) o(k,£) +% Texp[—|k —kl- 2K/ &2+ 2Kk £ g (K, 2) (K, &) dk'= S (K)
where h
@.71) S (k) =%exp[—|k|]—9(k,oo)

B % TeXp[—|k —k|—2K?/ 2+ 2k € g (K, £) B(K',00) k'

The WKB solution for &k, ) obtained in the previous section is somewhat complicated
and its calculation for values of k=0 would involve a lot numerical work. Therefore in
evaluating S(k), we use the approximate form for Guks(k,20) given by equation (2.66).
That is,

1
Zﬂeﬁ

Jexpl- |k —ki-2k2/&% + 2K/ &7 - By i]a k', ) dk

—00

eXp[_ ﬂeff |k|]

2.72) S(K) :%exp[—|k|]—

4ﬂ eff

Now we define the transformation
(2.73) Dk, &) =g(k,e)ek,$)



and rewrite equation (2.70) as
2.74) ok &)g(k,e)? +% Texp[—|k —ki—-2K?/ 2+ 2Kk &2 (K, &) dk'= S (K)

Equations (2.69) and (2.73) show that the resonance integral is given by

1 CD(O,é)}

+

ﬂeff g(o’g)

The integral term on the R.H.S. of equation (2.74) is now approximated as

(2.75) Ieff (f) :Zlol:

(2.76) Texp[— 2k /£ Jexpl |k —k1+ 2k k'/ &2 @ (K', &) dk'=

EYW, expl-k—¢k, | k /¢ b, o)
j=1

where & :é/ 2 . However, for better accuracy we introduce a convergence parameter

 and rewrite the above equation as

2.77) Texp[— 2k /£ Jexpl- |k K|+ 2k k'/£7] @ (K', &) dk’
_ Texp[— k)£ Jexpl- |k — K|+ (@? —2)k2 /&7 + 2Kk k'/ 2] D(k, &) dk’

= 5iwj exp[—\k-zkj \—(wz ~2)k? o + (2l 0"k k /& ]cp(zkj,g)

where & =&/w. The choice of parameter » will be given in the next sub-section. Using

(2.77) the integral equation (2.74) becomes
. )
ey 0Kk +EY expl k- [t -2 Ko ]«
j=1

x exp|(2/ &?)k k /E | D(Ek;,&) = S(K)
Putting k=¢ ki,for 1<i< N, we get N algebraic equations for the unknown ®(Zk,,&)
which can be written in matrix notation
(2.79) B®=S

The elements of the square matrix B and the vectors ® and S are given by

(2.78) B =%+wé expl-& \K kK, \_(wz ~2)k? J0® +(21 *)kik, ]



@ =D(fk), S;=S(fk), 1<i<N, 1<j<N
To obtain S; the integral appearing in equation (2.72) is to be evaluated numerically. It
has been found that Simpson’s rule evaluation, to an accuracy of 10 is quite fast.

It is seen from equation (2.75) that to obtain the resonance integral it is

sufficient to know ®(0,&). Therefore we choose the order of the gadrature formula to

be an odd number so that one of its roots, say, kj is zero. Thus, when @, is evaluated it
gives the resonance integral directly.

Since g(k, ¢) is a complex valued function, the unknown function ®(k,&) also
is a complex function. Therefore the system of equations (2.79) is equivalent to 2N real
equations. It is our aim to show that these equations can be reduced to (N+1)/2 real
equations.

The roots of the Hermite polynomials occur in conjugate pairs, that is, the roots
to be used in an odd order quadrature formula can be arranged as

0k, ki Kk, oo Koz —Ko —Kg =K, —Knaay2

We separate the real and imaginary parts of the square matrix B and the vectors @ and

S by writing them as

(2.81) B =Bf+iB'
O=0"+id'
S=5%+iS"

Substituting in equation (2.79), we get
(2.82) Bf®"- B'@®' =S*
B'®" + B* @' =S'
From the definition we know that the real and imaginary parts of g(k, &) are

respectively even and odd functions. Therefore, the integral equation (2.74) shows that

the real and imaginary parts of ®(k,&) are also even and odd functions. Thus with the
ordering of the roots as indicated earlier, we have

(2.83) O =+ Dy pyp 2SI <(N+1)/2
D =— q)iRHNfl),z ,2<i<(N+D)/2

®, =0



Exactly similar relations hold between the elements of the source vector S. The matrix
elements B;jj have the property
(2.84) Bf i = Bf i+(N-1)/2

BiF,e 1= B?+(N—l)/2, 1

BS 1= B?+(N—l)/2, 1

R R
Bi, jH(N=1/2 = Bi+(N—1)/2, i

B i~ BF:+(N—1>/2, j+(N-1)/2

2<i<(N+1)/2,2<i<(N+1)/2
The matrix B' is diagonal with the property that
(2.85) B ;= —-Bi w2 vz

B ,=0 , 2<i<(N+1)/2

Therefore, the matrix equations (2.82) can be partitioned as

'BR BF Bf[af| [0 O O 07 [sF
(2.86) BX B} BY|®*|-|0, B O &'|=|SF
B B Bf|®°| |0, O -B |-®']| |SF
‘0 O O o] [BX B* BF o7 [ o
O, B O |®*|+/BY BY BY| o@'|=| S
O, O -B |®%| |B} B} B|-®'| |-S

where BF and BF, ®®, @', S®, S'are, respectively, (N-1)/2 dimensional row and
column vectors and B}, B} and B/ ' are square matrices of order (N-1)/2. Expanding
the above equations we get
(2.87) BX @ + 2BROR = SF

BRO! +(BY +B% Jb" —~B'®' = SF

B.®" +(Bf B )p' = &'
B, being a diagonal matrix, it’s inverse can be obtained very easily. Therefore we can
solve for @' from the second of the above equations:

(2.88) D' = [BTHESCDF +(B% + B Jo" —§R]



Substituting in the third of equation (2.87) we get the following (N+1)/2 real equations
(2.89) BR ®F + 2BRDR = SF

(BF - BY[BLIBIof + [B! + (B] - BY)[BLI*(BS + BY Jlp°

=S'+(B]-BS)[B,]" S*

@ can be obtained from these equations using Cramer’s rule. Thus the effort involved
in obtaining the resonance integral by this method is the evaluation of two determinates
of order (N-1)/2. It may be noted that this reduction in the order of the determinants has
been possible because the matrix B} is diagonal. The transformation defined by
equation (2.73) was introduced to accomplish this reduction in numerical work.

To estimate the accuracy of this method we shall apply it to the evaluation of

resonance integral in the intermediate resonance approximation (narrow resonance and

wide resonance approximations are included). In Chapter-I it was shown that 1.5 (&) is

proportional to the J(&,f) function. The following sub-section essentially gives a
method for evaluating this function [46]. By comparing the J(&, /) function calculated
by this method with the tabulations of Adler and Nordheim [62] we shall obtain a good
estimate of the accuracy of this method.

(ii) Evaluation of the J(&, /) function

In the intermediate resonance approximation g(k,<) is replaced by a constant y?

and equation (2.17) becomes

2 © ' ' ' ' 1
(2.90) G,R(k,§)+% [expl-k—k|— (=K /7] B, (K", &) dk =Eexp[—|k|—k2/§z].
Since the kernel of this integral equation is of the displacement type its solution can be
obtained by Fourier transformation [54]. Let F(x,<) be defined as
(2.91) F(X,&) = j 0, (k, &) exp(—ik x) dk
Taking the inverse transform of equation (2.90) we get

(2.92) F(x.&) =%

Therefore 6 (k,&) becomes



(2.93) 0r(K, &)= ZL Texp(ik X) F(x,&)dx
72.—00

v (x,$)
1+7; w(x,$)

From the definition of the J-function given in equation (1.76) we find that
(2.94) IEUy;) =y 6(0,5)

0,z (K,&) can not be analytically evaluated from equation (2.93). Our aim is to obtain

1 % .
=— | exp(ik x dx
Zﬁ_jw p(ik x)

6,x(0,£) from the integral equation (2.90) using the quadrature formula. Separating the

zero temperature part of the solution we write [61]
(2.95) O (k&) = [0 (k) + i (K, ) Jexp(-K* 1&7)
Substituting for 6,;(k,&) in equation (2.90) we get

(2.96) P (K, &) +% [expl- [k —ki-2K2/&% + 2kk/ &2 | gy (k' £) tk'= S (K)

where S(K) is given by

(2.97) S(K) = %exp(—|k|) _ 0k, )

) % Jexpl- Kk —ki-2k*/ 2 + 2k g k', ) k' )k

Substituting for 6,;(k,) from equation (2.44) we get

(2.98) S(k) = skl
P F el ko2 22 o2 — el e
4ﬂljwe><p[ & k| 22/ + 2Kk~ p k] dk
and
(2.99) 6(0,4) =21 +95(0,¢)

A
Applying the quadrature formula, equation (2.96) can be reduced to the system of

algebraic equations
(2.100) BX =S

where the elements of the matrix B and the vectors X and S are given by

(2.101) B, =5, +W, 7l—exp—§ I =k, |-(@” ~2) k? /o +(2/ 0?)kk |



X; =&k &)

S;=S(¢k;) , 1<i<N,1<j<N
Here also we choose and odd order quadrature formula so that ¢ (0, &)= X,. The
integral equation (2.96) shows that ¢, (k, &) is an even function of k. Using this fact
and arranging the roots of the quadrature formula as indicated in the previous sub-
section the matrix equation (2.100) can be partitioned and the algebraic system can be

reduced to (N+1)/2 equations. For k=k; >0, the integral appearing in the expression for

S(k) can be written as

(2.102) Texp[—|ki —K|-2k2/ £+ 2k k'/ 2= B,|K]] dk’
- Texp[—(ki 1K) =22/ E — 2k, K'/E2 - Bk] dk'
+kfexp[- (k —k')—2k?2/&2 + 2k k'/£2 - p k] dk’

~fexp-(k —k)—2k/ 22+ 2k e/ - k] e

It is clear that S; can be expressed in terms of error functions. However, a direct
Simpson’s rule evaluation of these integrals, to an accuracy of 10, was also found to
be equally fast.

In order to determine the accuracy of this method, we evaluated the J-function
for a range of £ and g values and compared them with the tabulations of Adler and
Nordheim [62]. Without the introduction of the convergence parameter o, that is, with
the equations obtained by putting &’ =2, and a 19" order quadrature, the J-functions
calculated were accurate to about 0.6%; see table-111. With several sets of numerical
calculations, it was found that by varying the parameter o as a function of £ according
to the empirical relation
(2.103) w=22+2¢
the accuracy can be improved to about 0.15%; see table-1V.

It should be pointed out that the effort involved in this method of obtaining the
J-function is the evaluation of two determinants of order nine. A direct numerical

evaluation of this function is very time consuming [62,63]. This has given rise to



several approximate methods of evaluation [63]. The method given here is quite fast
and accurate and is a bri-product of our method of solving the integral equation of
slowing down theory.

(iii) Doppler coefficients of U-238 resonances

We shall apply the method outlined in sub-section (i) to calculate the
temperature dependent resonance integrals and Doppler coefficients of the first few
resonances of Uass in a mixture of U**® and hydrogen. Tables-V and VI give the results
when the nuclear concentrations are such that N,:N,=1 and 5. For the sake of
comparison we also give the results obtained by the intermediate resonance
approximation. In obtaining the temperature dependent interpolation parameter, the

transcendental equation given by Goldstein [21]

(2.104) ﬂzl—ltan’l(z)
z

_ ze[ Iy 1 I )]
2072 =y2) IE 72 IE )

was solved using as iterative procedure. The J-functions appearing in this equation

were_evaluated by the method given earlier.

Table-V shows that the Doppler coefficients calculated by the present method
compare well with those obtained by the intermediate resonance approximation.
However, some differences are found for the resonances at energies 6.68, 36.8 and 192
eV. The zero temperature resonance integrals obtained by the intermediate resonance
approximation are overestimates for the resonances at 36.8 and 192 eV and hence their
Dopper coefficients are found to be lower than that obtained by the present method. In
view of the assumption of the intermediate resonance approximation, we feel that our
results for the resonance at 192 eV are more accurate. Table-VI shows that the Doppler
coefficients calculated by the present method are within the statistical uncertainty of
Monte Carlo calculations [19] except for the resonance at energy 6.68 eV. The reason is
that in our calculations the moderator collision integral is treated in the narrow
resonance approximation where as in Monte Carlo calculations it is treated explicitly.
Further, it is seen that there is good agreement between the results of intermediate
resonance approximation and the present method for larger values of on.

It may be worth pointing out one important difference in our method of

calculating the Doppler coefficients. Since the change in the resonance integral due to



an increase of temperature is rather small, round off errors get introduced in the
Doppler coefficient when it is obtained from two independent calculations. In our
method, the major contribution coming from the zero temperature part appear explicitly
and therefore differences of large numbers do not occur in Doppler coefficient
computations.

D. Summary

In this Chapter, using Fourier transforms we converted the slowing down
equation to a Fredholm integral equation of second kind. In the zero temperature limit,
it was shown that the integral equation can be reduced to a second order differential
equation. The classical approximations, viz., the narrow resonance, wide resonance and
intermediate resonance approximations were found to correspond to approximating the
function g(k,&) by various constant values. The differential equation was solved in the
WKB approximation and thus a new expression for the zero temperature resonance
integral was obtained. It was found that after separating the zero temperature part of the
solution, the Fredholm integral equation can be solved with the use of Gauss-Hermite
quadrature formulae. As a bi-product of this method we obtained an accurate and fast
method for evaluating the J(&/) function. The method was applied to evaluate

resonance integrals and Doppler coefficients of some of the resonances of U,



Table-I
Zero Temperature Resonance integrals of U2 Resonances

Resonance Resonance Integrals (barns)

Energy (eV) | | IR | VAR | 5P 18 | R | WKB || Numerical
6.68 4.795 4.038 - 4.043 4.043 4.062 4.045
21.0 1.853 1.765 1.536 1.768 1.768 1.772 1.770
36.8 1.184 1.487 1.989 1.477 1.463 1.438 1.448
66.3 0.4169 | 0.4471 | 0.4429 | 0.4340 | 0.4360 | 0.4350 | 0.4351
81.1 0.1289 | 0.1098 | 0.1244 | 0.2842 | 0.1246 | 0.1246 | 0.1246
102.8 0.2849 | 0.4464 | 0.4027 | 0.4006 | 0.3745 | 0.3683 | 0.3675
116.8 0.1650 | 0.1685 | 0.1661 | 0.1571 | 0.1660 | 0.1660 | 0.1660
192.0 0.1209 | 0.2529 | 0.1705 | 0.1730 | 0.1647 | 0.1632 | 0.1622
209.0 0.0967 | 0.1454 | 0.1085 | 0.0087 | 0.1079 | 0.1079 | 0.1079
238.0 0.0687 | 0.0818 | 0.0707 - 0.0707 | 0.0707 | 0.0707

Notes:

1. Nuclear concentrations are such that Ny:Np=1:1

2. Resonance parameters used are given in Appendix-11

3. Resonance potential interference scattering is neglected.




Table-Il
Zero Temperature Resonance integrals of U2 Resonances

Resonance Resonance Integrals (barns)

Energy (eV) | | IR | VAR | 5P 18 | R | WKB || Numerical
6.68 9.176 9.012 8.368 9.017 9.017 9.018 9.017
21.0 3.548 3.940 4.344 3.887 3.883 3.887 3.876
36.8 2.267 3.317 3.860 3.170 3.065 3.038 3.026
66.3 0.7974 | 0.9956 | 0.8944 | 0.6268 | 0.8756 | 0.8760 | 0.8754
81.1 0.2431 | 0.2411 | 0.2429 | 0.3247 | 0.2429 | 0.2429 | 0.2428
102.8 0.5449 | 0.9902 | 0.7334 | 0.4624 | 0.6967 | 0.6982 | 0.6953
116.8 0.3147 | 0.3738 | 0.3259 - 0.3250 | 0.3252 | 0.3250
192.0 0.2310 | 0.5531 | 0.3032 - 0.2939 | 0.2954 | 0.2942
209.0 0.1845 | 0.3203 | 0.2037 - 0.2024 | 0.2028 | 0.2026
238.0 0.1310 | 0.1802 | 0.1352 - 0.1350 | 0.1351 | 0.1350

Notes:

1. Nuclear concentrations are such that Ny:Np=1:5

2. Resonance parameters used are given in Appendix-11

3. Resonance potential interference scattering is neglected.




Percentage Eror in J(&,4) Function Calculations:

Table-111

Kk £=0.1 £=0.2 £=0.3 £=0.4 £=0.5
4 0.53 0.41 0.24 0.15 0.12
5 0.48 0.50 0.39 0.29 0.21
6 0.43 0.55 0.49 0.41 0.33
7 0.43 0.52 0.56 0.51 0.46
8 0.27 0.46 0.54 0.56 0.52
9 0.18 0.39 0.49 0.52 0.50
10 0.09 0.31 0.35 0.49 0.49
11 0.01 0.26 0.36 0.36 0.46
12 0.01 0.14 0.30 0.32 0.36
13 -0.04 0.12 0.18 0.23 0.28

Notes:

1. B is given by the relation p=2"x 10”

2. Order of the quadrature formula, N=19

3. Convergence parameter ©°=2

4, Comparison with tabulations of Adler and Nordheim [63]




Table-1V

Percentage Eror in J(&,4) Function Calculations:

Kk £=0.1 £=0.2 £=0.3 £=0.4 £=0.5
4 0.16 0.16 0.09 0.06 0.07
5 0.11 0.16 0.13 0.12 0.09
6 0.09 0.15 0.13 0.12 0.10
7 0.14 0.13 0.14 0.12 0.12
8 0.04 0.12 0.13 0.11 0.09
9 0.01 0.10 0.02 0.10 0.10
10 -0.03 0.08 0.12 0.11 0.06
11 -0.07 0.08 0.10 0.03 0.09
12 -0.05 0.02 0.10 0.06 0.06
13 -0.07 0.04 0.05 0.05 0.05

Notes:

5. B is given by the relation p=2% x 10

6. Order of the quadrature formula, N=19

7. Convergence parameter ©°=2.2+2 X &

8. Comparison with tabulations of Adler and Nordheim [63]




Table-V
Doppler Coefficients of U% Resonances

Doppler Coefficients 10* A lest /AT (barns/°K)

Resonance
T=0-300°K T=300 - 600°K T=600 - 900°K
Energy (eV)
IR FTM IR FTM IR FTM
6.68 1.40 1.02 1.58 1.48 1.57 1.56
21.0 1.09 1.06 1.17 1.16 1.18 1.17
36.8 0.656 0.845 0.720 0.778 0.724 0.735
66.3 1.20 1.20 1.13 1.12 1.04 1.05
81.1 2.72 2.66 1.33 1.30 0.931 0.898
102.8 0.459 0.498 0.462 0.461 0.456 0.418
116.8 1.52 1.53 1.11 1.11 0.897 0.899
192.0 0.187 0.245 0.189 0.204 0.186 0.159
209.0 0.447 0.501 0.390 0.401 0.356 0.354
238.0 0.891 0.928 0.600 0.602 0.471 0.470
Notes:
1. IR -Intermediate Resonance Approximation

o~ LN

FTM — Fourier Transform Method (present)

Nuclear concentrations are such that N,:Np=1:1
Resonance parameters used are given in Appendix-11
Resonance potential interference scattering is neglected.




Table-VI
Doppler Coefficients of U% Resonances

Doppler Coefficients 10* A lest /AT (barns/°K)
Resonance
T=0-300°K T=300 - 600°K
Energy (eV)
IR MC FTM IR FTM

6.68 14.42 12.9+0.57 14.44 13.83 13.77
21.0 10.08 9.74+0.62 10.13 9.28 9.50
36.8 5.61 5.71+0.64 5.23 5.43 5.30
66.3 5.81 5.78+0.47 5.96 4.80 5.03
81.1 7.83 7.840.41 7.83 2.64 2.64
102.8 2.49 2.57+0.33 2.59 2.24 2.18
116.8 6.27 6.08+0.35 6.35 3.50 3.54
192.0 0.906 0.93+0.08 1.03 0.812 0.740
209.0 2.17 2.07+0.20 2.27 1.48 1.48
238.0 3.00 2.94+0.35 3.06 1.55 1.55

Notes:

1. IR -Intermediate Resonance Approximation

2. MC — Monte Carlo Method [Ref.19]

3. FTM — Fourier Transform Method (present)

4, Nuclear concentrations are such that Ny:Ny=1:1

5. Resonance parameters used are taken from Ref.19

6. Resonance potential interference scattering is neglected.




CHAPTER-III

FOURIER TRANSFORM METHOD FOR EVALUATING
RESONANCE INTEGRALS - PART-II

In this Chapter we shall extent the Fourier transform method to include
resonance potential interference scattering. This is important whenever the scattering
width 77, of the resonances becomes comparable to the absorption width 77 [14,24]. In
Chapter-1 we mentioned that in this situation certain problems arise in the intermediate
resonance approximation. We also pointed out the difficulties encountered in solving
the transcendental equations of intermediate resonance approximation.

In the previous Chapter resonance potential interference scattering was
neglected for the sake of simplicity in presenting the ideas. However as we shall see
the main ideas of the Fourier transform method are applicable here though some
important modifications occur when this generalization is attempted. In the zero
temperature limit we again get a second order differential equation in the transform
space, but now it contains a first derivative term. The Fredholm integral equation
resulting in the temperature dependent case is somewhat different from that obtained in
the previous Chapter. The kernel of this integral equation contains the Heavisdie unit
function and therefore the Gauss-Hermite quadrature formulae is not directly applicable
for obtaining its solution. But we shall show that Hermite polynomials can be employed
to obtain the resonance integral from this equation with minimum effort.

A: Derivation of the Freedom Integral Equation:

The equation to be treated here is (1.37). Substituting for the resonance cross-

sections we get

(3.1) [+ 72w (%, &) +m (&) | (%)

—a-m+ 2 [ 172 v n, 2.0 1)y

Introducing the discontinuity factor H(x,y,&) this equation can be written as

(3.2) L+ 72p (&) +m 2 O]F () =1- A)

+Aidk'v(k',s)e“k*%_T:‘” b+ 72w+ 72 1 ] () ay



On Fourier transformation we get
(3.3) F(K)+ 71 0k, &) +m G(k, &)=

=(1- AS(K)+ Av(k, £)[F (k) + 720(k, &) + 7, G (k. &)
F(k), Ak,%) and v(k, &) have been defined in equations (2.9) (2.8) and (2.6), G(k,<&) is

defined as
(3.4) G(x, &) = [ 1) 2(x.&) o
73 —0

It may be noted that G(k,&) is proportional to the rate of scattering collisions
contributed by the resonance potential interference.

Equation (3.3) can be rewritten as

1-A

(35) F(Q+g(k2) 0k, £) +h(k,2) 7k, &) = —o—) (k)= 5(K)
1-Av(k,é&)

where g(k, &) is defined in equation (2.18) and h(k, &) is given by

(36) h(k,g) — 771_A77m V(k’g)

1-Av(k, &)
From the definition of the quantities 71, 7.,and A, it is found that
m—An,
3.7 h(0,g) = +——"=0
(37) (0,6) =2

Now we have to eliminate F(k) and G(k) from equation (3.5). The equation (2.14)
relating F(k) and &k,&) provides one of the relations for this purpose. Another relation
between F(k) and G(k,&) can be obtained from equation (3.4) and the convolution

theorem, viz;

(3.8) G(k &)= [F(k) z(k—k', &) dk'
Here, 7(k,&) is the Fourier transform of the x(x,&) function. Now changing the

variable in equation (3.5) to k> multiplying by i (k —k', &) and integrating we get

(3.9) 0,2+ [7(k-K',8) [9(K',£) 0K, &) +h(K', ) 6K, ok = 7 (K, £)

Similarly, using y(k — k:, &) we find

(310) Gk, &)+ [7 (k=K' [g(k',2) 0k, &)+h(k',£)G(K',&)]dk'= 7 (K, &)
Thus the slowing down equation has been transformed to two coupled Fredholm

integral equations. These coupled integral equations can be rewritten in terms of a



single function the following way. Multiplying equations (3.9) and (3.10) respectively
by g(k, &) and h(k, ), and adding the resulting equations we get

0

(3.11) ok,)+ [[9k, )7 (k—K.&) +h(k,&) 7 (k—k',&) Jo (K, &)k’

_ ~[gk.e)7 (k&) +h(k.&) 7 (K. &) ]
where ®d(k, &) is defined as

(3.12) o(k,) = [g(k,) Ok, &) +h(k,)G(k,&)]
From equations (3.7) and (3.12) we notice that ®(0,&) is proportional to 6(0,¢).

Therefore we get

21
3.13 |y (£)=21,0(0,&)=——2—(0,
(3.13) err (S) (0,8) 9(0.9) 0,9)

To complete the derivation, we have to obtain y (k,&) . Using equation (1.13)

and the inverse of the convolution theorem we get

(3.14) 7(k, &) = 1H" (k) exp(-|k[) exp(- k?/ &%)
Here H (k) is the Heaviside unit function defined as

(3.15) H'(k)= 1, k>0
= 0,k=0
=-1, k<0

zH*(k)exp(—|k|) is the Fourier transform of x/(1+x?). Using the expression (2.16)
for i (k, &), the function ¥ (k,&) can be written as
(3.16) 7k &) =2H (k) 7 (k&)

Therefore, the integral equation (3.11) takes the form
(3.17) CD(k,f)Jr%Iexp[—|k—k'|—(k—k')z/cfz]x
X [g(k,g) +2:H (k- k')h(k,g)]@(k',g)dk'

=%exp[—|k|—k2/§2] la(k, &) +20H " (K)h(k, £)]

This integral equation is slightly more complicated than the one obtained in the
previous Chapter. Nevertheless, the problems associated with the Doppler broadened
resonance cross-sections and the discontinuous nature of the slowing down kernel have
been removed in this formulation.

B. Resonance Integrals in the Zero Temperature Limit:




In the zero temperature limit it is easier to consider equation (3.9) instead of
(3.17). Taking the limit E—oo it takes the form

(3.18) 6’(k,oo)+% [expl=[k—k)[g(k) O(k',00) +h(k") G(K',0)] dk'=§exp(—|kl)

As was done earlier, we reduce this equation to a second order differential equation in
6(k, )

(i) Derivation of a differential equation for 6

We have already seen that the kernel of the above integral equation

(1/2) exp(—|k—k'|) is the Green’s function of the second order differential operator:

(d 2/dk? —1). Applying this operator we get

2
(3.19) [%—1}9&,@)—[g(k,g)é’(k,OO)+h(k,g)G(k,oo)]=—5(k)
Using the zero temperature limiting form of the y(x, &) function we find that
15 2X
3.20 G(k,0) =— |e™ f(x dx
(3.20) (k,0) Zﬂ_jm e
Similarly we have
1% 1
3.21 O(k,00) =— |e** f d
G2 o= e 0 e

These equations show that

(3.22) G(k,©) = —21:—k€(k,oo)
Such a simple relation between &k, &) and G(k,&) does not exist for other values of &

Now equation (3.19) can be written as

(3.23) 3%+21h(k,5)(3—f—[1+ a(k, £)]0(k, ) =—5(k)

Thus the evaluation of the zero temperature resonance integral including the resonance
potential interference scattering effects has been reduced to the solution of this
differential equation. A comparison with equation (2.23) shows that the inclusion of
resonance potential interference scattering gives rise to the first derivative term

d@/dk. The delta function appearing on the RHS of the above equation can be
replaced by the discontinuity condition on d #/dk at k=0. From equations (3.18) and

(3.21) we find that the boundary conditions (2.27) and (2.28) on &Kk, ) apply here also.
(i) WKB approximation for &k, )




The function h(k,&) can be written as

Av(k, &)
3.24 h(k, &) = —p Y \e)
(3.24) (k,&) = m, +(m 77°°)1—Av(k,g)
The homogenous part of equation (3.23) can be written as
d’e Av(k,g) |dé
3.25 —+2 -n)——————|—
( ) dk? + {771"'(771 Uw)l—AV(k,é‘)}
2 2 2y Av(k )
- -y )———2—10(k,©) =0
{ﬂl +(7 700)1_Av(k18)} (k,0)

Taking the limit e—>0, we obtain the narrow resonance approximation,

d?e do
dk’;R +2im, dIZ‘R _ﬂlz O\r (K,0) =0

We also know that equation (3.25) reduces to the above form in the asymptotic range.

(3.26)

To solve equation (3.26), we make the substitution

(3.27) Oy (K,0) =6 (k,00) ™"
and obtain

d26,,
(3.28) o (B2 =n?)0;n (K, ) =0

It is seen that all the boundary conditions satisfied by 6, are also satisfied by G-

Therefore, we have

(3.29) eNR(k ) = eXp \/ﬂl 1 k
and
(330) O () =~ exp|- A7 77 K|—ink]

F

when B7 >n?. The resonance integral in the narrow resonance approximation becomes

\/ﬂz 7

and is the same as given in equation (1.67). To obtain the WKB solution, we utilize the

(3.31) I () =21, Oy (0,0) =

asymptotic form of &k,<) and write

(3.32) O(k,0)=C, exp[— B k|-imk+ T S%k')dk} , k>0

k
-C. exp[ﬂl* K|k + jS(k')dk} k<0

where



(3.33) B =B -

and C. and C. are arbitrary constants to be determined. As was done in the previous
Chapter using the boundary conditions (2.28) and (2.29), &k,<) can be expressed as

(3.34)
1
* exp
25 +S7(0)+S(0)

(K, 0) = {—ﬂfk—imk—j’y(k')dk} . k>0

=— L — < EXp
25, +S7(0)+S (0)
The boundary conditions on S*(k) are given by

{+ﬂ1k —ink —TS(k')dk} . k<0

(3.35) S*(k)>0 as k — oo
Substituting for &k,<0) in equation (3.25) we get

_ds® .. Av(k,e) N
3.36 F +2| B, —i(n,—n,)—————"—1|S7(k
( ) dk |:ﬂ1 (m, Uw)l_AV(k’g)} (k)

. . Av(k, &)
S*(K))=(@a+ib)———"1—
+[S(0F = (a+ib); ==

The upper sign stands for k>0 and the lower sign for k<0. The constants a and b are
given by
(3.37) a=yf —yi—2m(m-n.)

b=24 (7, -1.)
The above equations for S*(k) are quite similar to these obtained in the previous
Chapter and can be solved by the iterative method. We consider the term:

. Av(k,e)
2i(p,—n,)—————
on=n.)7—4 v(k.2)
as perturbation terms. In the second order approximation we get

™ (k) +[S™ (k)1

(3.38) $:(0) = (a+ib)[exp[-24; k]%
+(a+ib)2(nl—ﬂx)£%dk.!e)(p[_2ﬂ: k']%
L . % i Av(K',e)
~(a+ib)* [expl-247KIdK) [expl-247 k1= ="

and



S . . Av(k, &)
(3.39) S;(0)=(a+ib) £ expl2f] Kl vice) dk
. ¢ Av(k,e) ‘ e AV, E) .
+(a+|b)2(771—7700)'|;—1_A V. dk'[oexp[Zﬂl Kl o 2 dk
~(a+ib)® [exp[2 K]dk jexp[zﬁ;k']% '

Here also we find that the real and imaginary parts of S, (0) have the property
S;R (0) =+ S;R (O)
S2+| (0)=_ S2_| (0)

Therefore the resonance integral is found to be

Iy
Vi S;R (0)

To evaluate the integrals is equation (3.38) we expand the integrands as power series in

(3.40) 1B (o) =

A. Keeping terms up to A* we obtain S, (0) as

(3.41) S (0) = ZA” laxRI, (c) +bx11,(c")]
2p =
%AZ lax1v,,(c") —bxRI, (c")]
+%A3 [ax (IV,, + 1V,,) =bx(RV,, + RV,,)]
[(a —b?)x(RIZ = 112 = 2RV,,) + 4abx (RI, R, — IV,,)]
8ﬂ1
3
+ ZA*g (a® —b?)x[RI,RI, =11, 11, —=RV,, =RV, ]
84,
3
+ 22 2abx(RI, 11, +RI, 11, ~ IV, — IV,,)

1
where ¢” =&/2p, . Further, R, and 1l, stand for the real and imaginary parts of the
integrals in given in equal (2.64). Similarly, RV,, and V., denote the real and
imaginary parts of the double integrals.

C. The Intermediate Resonance Approximation:




In this section, we shall apply the technique of intermediate resonance
approximation to obtain an approximate solution to the differential equation. We shall
develop the formulae in a slightly general way and obtain the results of Goldstein [23,
28] as a particular case. We shall also see that the new formulation circumvents some
of the difficulties present in the intermediate resonance approximation.

Multiplying by [1-A VK, &)] equation (3.25) can be written as

4% d%0 do
207,29 _ g2 (k.0
Fra d i T2 g P O )}

where 2 = (1+y2). Now, we add to both sides of the above equation the term:

(3.42) —+21 771

— B2 0(k, )= Av(k, 5){

2”74 ~ B; 0(k, )

and rewrite it as

d? d
G4y STvem, S0 g o) = (5 - g otk 21l ) S
+ Av(k, 8)L”if +21n, %—ﬂw o(k, )}

Here, the quantities £, and 7, are as yet unspecified and are to be determined from

certain conditions to be imposed on @(k, ). In the present formulation, these constants

are considered as two independent parameters.
The method of intermediate resonance approximation can be developed in the

following manner. A first order approximation &, (k,o) is obtained by neglecting all

the terms on the RHS of equation (3.43). That is

(3.44) dkz dk ~ B2 6,(k,0)=0

The solution of this equation satisfying the three boundary conditions is given by

1 .
(3.45 6, (K, 0) = 25 7, k=, K]

when BZ > n:. Further

(3.46) B =B~ .

A second order approximation is obtained by substituting &, (k,) on the RHS of
equation (3.43). That is



d2,
dk?

do
(3.47) +21m, d—k2— B’ 0,(k,0)

=Bz - g2 +2i(n, -, B, —in, )]ziﬂ*exr)[—lm k=, K]

1
25,

On the RHS the + signs refer respectively to the cases k>0 and k<0. To solve this

+ AV, E)B2 - B —n7+2m, . £2i Bi(n, —10)|=—expl- 1, k- B K] ]

equation, we make the substitution
(3.48) 0,(k,0) =8, (k,00) e ™"

and obtain

(3.49) O;%— 12 .6; (k,0)= (2 - 2 )Ziﬁ*exp[—ﬁ; K ]+

it -n )55 -in, ) v ) (x 20| cel - )

where the constants X and Y are given by
(3.50) X=pB=Bi=ni+2n,n,
Y=28,(n,-1n.)

We notice that the boundary conditions on &, (k,) are same as those on &, (k,).
8, (k,) , which vanishes at +cois given by

(3.51) 0;(k,%)=C, exp|- 5, k|
g~ 2m )18 - e exel K]
+ A(X +iY) 2;; exp[—ﬂ; k ] Idk'Ie—zﬂ;(k"—k') vk, &) dk'" , k>0
and
(3.52) 0;(k,)=C_exp| £ k|

]

k

+k [1312 _:Bj + 2(771 _7700)(_ 'ﬂ; -1, )]4,3% exp[_ﬂ;

1

+AX —iY) T

exp| 5. k | Tdk'?ezﬁ?“"” v(k", &) dk" , k<O

The continuity condition on &, (k,) gives



AX +iY

A

(3.53) 6;(0,0)=C, + ) j dk’ j e 2K Lk g) dk

A(X 25 (k"=k') " "
A2y Tk [e4€ ) p(k”, &) dk
i o]

Differentiating equations (3.51) and (3.52) we get

=C +

(354) %f( -6, (0,%)

-2 n g -n e @iz
and
(355) %ﬁ - 5,6, (0.%)

B2 - B2+ 20— )18 -, ey A (2, +i2,)

w TH >
ag; 2B,

The quantities Z; and Z, are given by

(3.56) Z,= | o2k SINEK) gy 285 onaf &
0 ek £ 20,
2
(3.57) Z,- | [oomtooos(ek) g 126 fy &
) ek 2 ¢ a5

Applying the discontinuity condition on d0;/dk and using equation (3.53), we get

B58) G0 =5 e = ~2m, i =n.) ] (X2, 2,)

In the first and second order approximations we have two unknowns, g, and n,. We
get one relation between them on imposing the condition that at k=0 the two
approximations are equal. That is,

(3.59) 6,(0,) = 6,(0,%) = 8, (0,0)

In the intermediate resonance formulation, Goldstein employed the condition that the
resonance integrals are same in the two orders of approximation. Since 6(0,%) is
proportional to the resonance integral, we see that (3.59) is same as Goldstein’s
condition. Thus we get

(3.60) B =Bt =2n,(n-n.)+2AB, (XxZ,+Y xZ,)



The next condition to be imposed on &, (k,) and 6,(k,) can be on their derivatives
at k=0. This becomes quite natural because on matching the derivative of 6, (k,x) also
it can become a better approximation. d@/dk at k=0 is proportional to G(0,).
Therefore the two conditions together impose a further restriction that the resonance
scattering rate is same in the two approximations. Equations (3.45), (3.54) and (3.55)
show that if (3.60) is satisfied, we also have

(3.61) RP[%} =RP{%}
dk J. dk Jo.

We use RP and IP to denote the real part of the quantities in the respective brackets.
Therefore, we impose the condition

(362) IP[%} :IP[%}

dk Jo. L dk .
In terms of g, (k,0), this condition becomes

do . do,
3.63 IP|—| =-n,6,(0, IP| —2
(369 [dkL .00 {dk }

Substituting for the derivatives at 0. we get

7, * h—mn, A
(3.64) - =-1,0,(0,0) - L2 ——
28, 7 2B, 2P,

The same result can be obtained by equating the derivatives at 0 . Using equation
(3.59), we get
(3.65) n,=m+A(YxZ -XxZ,)

(YxZ,-XxZ,)

Thus we have the transcendental equations (3.60) and (3.65) to be solved to determine

£, and n,. Once they are obtained, the resonance integral is given by

(3.66) 1% (@) = 21,6,(0,00) = 21,6, (0, 0) = ;0*

A
The condition imposed on the derivative of &, (k,») is the factor which makes the
present formulation different from that of Goldstein.

(i). Goldstein’s Method [23,28]:

Golddstein’s transcendental equation (1.72) for the interpolation parameter A can be

obtained from equation (3.60). In the narrow resonance approximation, we know that

equation (3.25) reduces to (3.26). In the wide resonance limit we have



d?4 n,—An, dé BE— ApS?
3.67 wr o, Th w0 wr M1 = g (K, 0) =0
(367) a2 I A ok 1 w(kio)

From equation (3.7) we notice that the coefficient of the first derivative term is
identically zero. That is, in the wide resonance approximation inclusion of resonance
potential interference scattering does not modify the equations. Introducing the

interpolation parameter A through the definitions

o BE-ABEU-2)

(3.68) P 1- Al-A)
and

__Am
(3.69) T 1A= )

we find that the narrow resonance and wide resonance approximations are obtained
when A is taken as 1 and 0 respectively. In fact, Goldstein had introduced the parameter
by writing the slowing down operator as a linear combination of the approximate
operators obtained in these approximations. But this leads to the same expressions for

B2 and 7,. The equations (3.68) and (3.69) take the place of our second equation
(3.65). Using the identities,

_AL-A) (82 -8)

(3-70) ﬂ/l _ﬂl - 1_ A(l—ﬂ,)
2 p2 _ ﬂlz _ﬂi
(3.71) B~ B —1—11_ A1)

and equation (3.60) it can be shown that A is given by

~ 2B -n; (m-n.)Z,
(3.72) A=1-2Z—— 5
ﬂl _ﬁm_zﬂﬂ(ﬂl_ﬂw)

which is same as equation (1.72) except for notational differences. When resonance

potential interference scattering is neglected, our method does not reduce to that of
Goldstein. The second transcendental equation (3.65) remains and a non-zero value of
would be obtained. Then the method becomes similar to that of Pomraning and Dyos
[31] with two interpolation parameters.

(i). New Transcendental Equations:

Since the quantity of interest in the evaluation of resonance integrals is S, the

equations (3.60) and (3.65) can be rewritten as



(3.73) B =B+, —m )+ N2 - 52—, —n. V|2, +2A8, (0, -n.)Z,

and

A * *
(3.74) n,=m+ A(UA - 7700)21 _ﬁ[ﬂﬂz _,Booz - (771 —1s )2]22
A
Here . = 87 —n?. When g—o, we have Z; —0 and Z,—0. Hence
(3.75) :\;; :ﬂl*z v TIne =70
When ¢—0, we have Z;—1 and Z,—>0. Therefore
(3.76) V;ZR = ﬂl*z + (77WR _771)2 + Alﬂ\XIZR _ﬁ;z - (77WR 1y )2 J

Thwr =T + A(’?WR - 7700)
Equation (3.7) shows that 7,,, =0. Thus we get

*2 A p*2
(3.77) R a2

WR 1_ A
Thus the new equations give the limiting narrow resonance and wide resonance

approximations.

For a given value of S, equation (3.74) is quadratic in 7, . Therefore it can be

solved in terms of 3, to obtain

1
AZ,

(3.78) n [An,z,+ B a- AZ))]

+

= (an.z,+ pra-AZY} - AZ, 2 (0 —n. )}~ AlB7 - 52 )2,

2
The positive root 7; will be a very large quantity and is to be rejected. The
transcendental equations (3.73) and (3.78) can be solved easily by the iterative method.
Setting n, =n, in equation (3.73), B, can be found by iteration. Having obtained it,

the negative root in equation (3.78) gives the new value of 7,. This process can be

repeated till their magnitudes converge to the required accuracy. 7, has been found to

be positive number in all numerical calculations for U-238 resonances except for the
one at 6.68 e.V.

(iii) Comparison of Resonance Integrals:

Here we give a comparison of the zero temperature resonance integrals

calculated by the Fourier transform method and intermediate resonance approximation.



Tables VII and VIII give the results for the resonances of U?*® in a homogenous
mixture with hydrogen. The nuclear concentrations are such that N;:N, = 1 and 5.
Tables also contain resonance integrals obtained by the numerical solution of equation
(3.2). It is seen that the resonance integ4rals obtained by the WKB solution compares
well with the numerical results. As seen from table VII, maximum difference is about
4% for the resonance at 36.8% eV. For the resonances at energies 102 eV and 192 eV
belonging to the intermediate class also the agreement is quite good.

Tables also show that the agreement between the numerical results and those
obtained by the new transcendental equations is fairly good. The major advantage of
the new equations is that they can be solved easily by the iterative method. This does
not happen to be the case with Goldstein’s equation (27). Further, the two roots are
sufficiently separated and we are able to pick up the required root easily. In Goldstein’s
method also equation (3.72) gives two values of A. But they are very closely spaced and
it becomes necessary to choose the criterion that its value of which gives the larger
resonance integral must be chosen [27].

D. Solution of the integral equation for @&x(k,¢&)

In this section we shall outline a procedure to solve the integral equation (3.11).
We notice that the kernel of this integral equation contains the Heaviside unit function.
The quadrature formulae for approximating any integral are applicable only when the
integrand can be approximated by a polynomial. Hence it is not appropriate to use the
quadrature formulae for its solution. Therefore, we attempt to expand @(k,<&) in a series
of suitable functions. In this series expansion, it would be advantageous to factorize the
known behavior of the function @(k,%). For instance, we know that there is an
exponential dependence in the zero temperature part of &(k,&). That is
(3.79) D(k,0) o exp[- K|
where B is given by
(3.80) B =5 +55(0)
The source term on the RHS of equation (3.11) shows that @&(k,&) would have a
dependence given by exp(-k’/&). Further, the integral equation (3.11) shows that the
real and imaginary parts of @(k,&) are respectively even and odd functions.

Incorporating all these facts, we write



(3.81) (k,¢) = eXp(—ﬂlkl—kz/fz){iCn Hon (k) +i %Dn H§n+1(k)}

where H; (k) are related to the Hermite polynomials H (k) through the definition,
(3.82) Ho (k) = Ho (k)

H, . (K)=H, ,(k),n>0

H,. (k)=H, (k)-H, (0), n>1
The expansion in terms of H_ (k) shows that @(0,&) given by
(3.83) ®(0,¢) =C,
In fact the expansion (3.81) can be in terms of any polynomials. The use of H_(k),
rather than H (k), makes @&(0,¢) to be given by C,. Later on, we shall show that with

the above expansion it is possible to obtain the matrix elements of the system of
algebraic equations determining C, and D, by suitable recursion formulae. Substituting
for @&(k,&) in equation (3.11), we get

(3.84) > exp(- £ 1K DHz, (K)+ Yz, (LG,

+i3[exp(= 1K DH30a(K)+ Y2, (K)]D, =S (k)

where

(3.85) s(k)=exp(- 81k |) |g(k, &)+ 2iH" (k) h(k, &)]

and

(3.86) an(k)% TH;(k')exp(—ﬂ|k'|—|k —k|-2k"? /&2 + 2k k'/(fz) x

la(k, &)+ 2i H" (k - k') h(k, £) |k’
Thus we have a relation between the (2N+1) expansion coefficients C, and D,. One
possible way of obtaining (2N+1) equations to determine C, and D, is by writing
equation (3.84) for (2N+1) values of k [49]. We choose these k values as the roots of
Hon+1 (K) which is proportional to the first term neglected from the series expansion
(3.81). Thus the present choice eliminates the error contributed to the equations by the

neglecting this term. One of the roots, say k, of Han+1 (K) is zero and the remaining 2N



roots occur as pairs with opposite sign. Writing equation (3.84) for these values of k,
we get

gen Yl sk ) R k)L ke,

i [expl- 1K, ) Ha(k,)+ oo (6,)]D, =5(6,) |, 0 j<2N

n=0

Another reason for choosing Hermite polynomials for the expansion (3.81) may be
pointed out here. It is clear from equation (3.87) that all the k values have to be distinct
so that there are (2N+1) independent equations for determining all the constants C,, and
Dn. The orthogonal polynomials Hay (k) have simple zeros distributed on the real axis
and therefore we get (2N+1) independent equations.

From equation (3.85) we notice that the real and imaginary parts of S(k) are
respectively even and odd functions. Similarly, equation (3.86) shows that the real and
imaginary parts of Y,n(k) are even and odd functions whereas that of Y,n+1(k) are odd
and even functions respectively. Therefore, for the positive values of k;, we have

(3.89) S [expl- B, ) i (k) + Y2 () + Y2 ()]

_N—l . )
+i> [exp(= Bk, ) Hana (k) + Y2 L (k) +i Y0 (k)]D,
n=0

=SR(kj)+S'(kj) ,1< <N
Here the super scripts R and I on Y,(k) and S(k) denote the real and imaginary parts. For
the negative values of k;, we have

(3.89) S [explc K, ) (k) Y2 () - v (k)]

n=0
_N—l . )

11> [expl= Bk, ) o (k) + YR 4 (k) =i Y. (k,)]D,
n=0

—SR(k,)-S'(k,) , 1< j<N

Adding and subtracting equations (3.88) and (3.89), we get

G0 Yol sk Hik)+viK) I,

N-1
=Y Y3k D, =8"(k)), 1< j<N
n=0



and
N | N-1 . R
(3.91) > VA (K)Cy =Y [expl- k) Hinalk) + YA () I,
n=0 n=0
=S'(k;), 1< j<N
For the zero root, we get
N . R N-1 | .
(3.92) > [HL@+YE©O) Jc, - Vara(0) D, =57(0)
n=0 n=0
Thus we have (2N+1) unknowns and the same number of equations. The k; values
appearing in equations (3.90) and (3.91) are the N positive roots of Han+1 (K).

As has been pointed out in Ref.[49] this method becomes attractive if the
quantities Yn(kj) can be evaluated using recursion relations. This possibility will
certainly depend on the kernel of the integral equation. We shall now show that this is
indeed the case with equation (3.11). Splitting the integral in equation (3.86) for

positive values of k;, we get

(3.93) Y, (k) =e " 3k, [0k, 8)+2i hik,,5)]
+eb32(K,) [o(k,.8) - 2i hk,, )]

+(-D)"e M I3k, [ak;,©) + 2i h(k,, )]

where
k;

(3.94) 33 (k;)=] Hi(k)exp(- gk +k —2k? 1 &% + 2K k1 £7) ok
0

(3.95) JZ(kj)=[Hi(k)exp(- pk —k —2k/ £+ 2k; k 1 £7) dk
k;

and

(3.96) 32 (k)= Hi(kyexp(- gk —k - 2k? /&2~ 2k; k1 £2) dk
0

Therefore, it is sufficient to have recursion relations for J! (I =1,2,3). Subsituting for
H:(k), we get

(3.97) Jana (ki) =13, (k) , n=0

(3.98) Jan (k) =13, (k) =15 (k) Hy, (0) , n>1

and



(3.99) 3o (k;) =15 (k)
where 1! (k;) are given by the same equations defining J! (k;) but with the difference

that H, (k) is replaced by Hy(k). For instance, 1, (k;) is given by

k
(3.100) 1 (k)= [ H, (k) exp(- gk +k —2k?/ £+ 2k; k1 £) ok
0
Performing integration by parts, we get
1
(3.101) 1! (|<J.)=2kj /§Z_ﬁ+l[Hn (k) exp(= Ak, +k; )-H, (0)]

—an (K)exp(— Bk +k —2k2 1 £2 + 2k, k1 £2)[H," (k) - 4kH,, (k) / £ dk

Using the recursion formulae for Hermite polynomials [66] we get
(3.102) (2/2)11 (k,)=H, (0)- H, (k,) exp(- Bk, +k,)
+onll, (k)(L-2/8%)+(k, 272 - p+1)IE (k)
Thus all the 1;(k;) can be evaluated if I;(k;) and I (k;) are known. Equation

(3.100) clearly shows that these can be expressed in terms of error functions. The

recursion formulae for 12 (k;) and N (k;) can be obtained exactly in the same way.
They are given by
(3.103) (27212 (k,)= H, (k,)expl- Bk, —k,)

w2012, (k) L-2/&%)+(k, 2782 - p-1)12 (k,)
and
(3.104) (27&2)13 (k)= H, @ +2n12, (k,)1-2/ &%)k, 2/ £2 - B+1)1 (k,)
Once the quantities Yn(kj) are evaluated, C, can be obtained from the system of
algebraic equations using Cramer’s rule. Thus in this method, the effort involved in
obtained @(0,&) and hence the resonance integral would be the evaluation of two
determinants of order (2N+1).

E. Summary
In this Chapter we extended the Fourier transform method to include resonance
potential interference scattering. We derived a Fredholm integral equation for a

function related to 4Kk,&). In the zero temperature limit, in the integral equation was



reduced to a second order differential equation. The inclusion of resonance potential
interference scattering introduced a first derivative term in the equation. The WKB
method was extended to solve this equation. Further analysis of the differential
equation led to a new formulation of the intermediate resonance approximation. Finally
we have given a method to solve the Fredholm integral equation resulting in the
temperature dependent case.



Notes:
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Table-VIl
Zero Temperature Resonance integrals of U2 Resonances

Resonance Resonance Integrals (barns)

Energy (€V) | 1 i | lao | e | lamre
6.68 4.840 4.088 4.091 4.103 4.090
21.0 1.939 1.839 1.884 1.858 1.873
36.8 1.316 1.672 1.663 1.566 1.621
66.3 0.4491 | 0.5002 | 0.5178 | 0.5104 | 0.5124
81.1 0.1305 | 0.1301 | 0.1310 | 0.1308 | 0.1309
102.8 0.3269 | 0.4794 | 0.4645 | 0.4702 | 0.4676
116.8 0.1757 | 0.1826 | 0.1921 | 0.1933 | 0.1935
192.0 0.1425 | 0.2175 | 0.2086 | 0.2246 | 0.2192
209.0 0.1104 | 0.1348 | 0.1352 | 0.1403 | 0.1399
238.0 0.0756 | 0.0806 | 0.0835 | 0.0848 | 0.0849

Nuclear concentrations are such that N,:Ny=1:1

Resonance parameters used are given in Appendix-11

Resonance potential interference scattering is included.

IlR

oty Tefers to Goldstein’s intermediate resonance approximation

I e'{f(z) refers to intermediate resonance approximation of Chapter-I11




Notes:
1.

2
3.
4

Table-VIII
Zero Temperature Resonance integrals of U2 Resonances

Resonance Resonance Integrals (barns)

Energy (eV) | | R et o Lt A Pl
6.68 9119 | 9106 | 9.116 | 9.114 | 9.115
21.0 3591 | 4.080 | 4.076 | 4.062 | 4.062
36.8 2328 | 3.358 | 3306 | 3.307 | 3.285
66.3 0.8127 | 0.9520 | 0.9472 | 0.9561 | 0.9547
81.1 0.2439 | 0.2467 | 0.2475 | 0.2477 | 0.2477
102.8 0.5636 | 0.7843 | 0.7649 | 0.7960 | 0.7880
116.8 0.3198 | 0.3451 | 0.3447 | 0.3465 | 0.3463
192.0 0.2403 | 0.3335 | 0.3239 | 0.3410 | 0.3380
209.0 0.1905 | 0.2229 | 0.2211 | 0.2251 | 0.2248
238.0 0.1341 | 0.1438 | 0.1435 | 0.1443 | 0.1443

Nuclear concentrations are such that N,:Ny=1:5

Resonance parameters used are given in Appendix-11

Resonance potential interference scattering is included.

l iy refers to Goldstein’s intermediate resonance approximation

IIR

ot 2y T€fers to intermediate resonance approximation of Chapter-I11




CHAPTER-IV
FOURIER TRANSFORM FOR EVALUATING RESONANCE

INTERACTION EFFECTS

In earlier chapters the Fourier transform method for evaluating resonance
integrals of isolated resonances was developed. When resonances are isolated it is
possible to use the unperturbed flux distribution, viz., the 1/e distribution above the
resonance under consideration. Thus one is able to calculate the absorption rate in each
resonance independently. When resonances of the absorber are closely spaced the
above assumption breaks down.

For fissile nuclides the overlapping of the resonances is important in calculating
the neutron absorption rate [1]. This effect is generally important for fertile nuclides in
the higher energy range and hence it can be analyzed in narrow resonance
approximation. However, there are other resonances such as the two low energy
resonances of Th®2 which overlap to a certain extent. For these resonances the
absorption rate in the first resonance perturbs the flux distribution in the second
resonance with the result that the overall absorption is reduced in comparison to that
obtained in the isolated resonance approximation. The overlap effect would also lead to
a modification of the Doppler coefficient of resonance absorption.

The problem of overlapping resonances was first analyzed by Corngold and
Schermer [35] using the variational approach to the slowing down equation. Later,
using the narrow resonance approximation to evaluate the collision integrals, Hwang
[51,65], Haggblom [66] and Jawas [67] estimated interaction effects. Our aim is to
extend the Fourier transform method to treat this problem [50].

A. Derivation Of The Fourier Transformed Equations:

We consider a homogenous mixture of a moderator and absorber which has two
overlapping resonances. With the narrow resonance approximation for the moderator

collision integral the slowing down equation (1.15) becomes

4.1) [0.(e)+o,(e)+0c,|D(e)= O-_én“‘ej‘a O(-]S-(E)S;) %

e

!

The microscopic scattering and absorption cross-sections are given by the superposition
of the Breit-Wigner cross-sections for individual resonances.



2 T, e-e. e—e.
(4.2) 05(9)22{%1 Fl 1/1{2 T ! ,§j]+ Oopij ){2 T L jJ:|+ap
= j ] j

e—e,
(4.3) ZO_OJ T, [ r ’é:jJ

Let us assume that we are interested in calculating the absorption rate in the
resonance denoted by the subscript 1. Now, the variable e equation (4.1) can be
changed to x defined by (2.2)

e—e.,
1—‘1

(4.4) X=2
The equation (4.1) becomes

(4.9) 1+Z}/j2l//j(xigj)+njl(xigj)i|f(x)

X+e

=(1—A)+§j {1+nyw,-(y,é,->+m(y,§j) f(y)dy

X

y?, 1, and eare defined by

O, Oyp: .
(46) J/JZZL ! ﬂj:L ) J:112
op + 0, Op + 0,
o, I . Oop |
}/J?:Lﬂ1 Uj:ﬂ , =34
op I Op
1—
£=2e g
1—‘l

Resonance integral of the first resonance is given by

o

(4.7) G I CISL
The quantities y; and y; and are given by
(4.8) vi(X&)=v (X&) ,» n(x&)=x (X&)

v, (X, &)= l//( ,U GZZJ X, (%&,)= Z( ,U ‘fz}

V V

where
(49) lu:erzl:lerl ’ V*Z%



The parameter g4 determines the magnitude of the overlap effect. If it is very large,

equations (4.5) and (4.7) show that the presence of the second resonance will not affect

the nature of f(x) near the origin and hence the resonance integral, 15 (&).

We define the quantities

(4.10) 0,(k.&)) =2i [e £ (0w, (x.&)) dx
ﬂ-—oc

(4.11) Gk &) =t [ 1) 7, (x.&,) o, =12
2r *,

On Fourier transformation of equation (4.5) we get

(4.12) F(k)+Z7f 0, (k, &) +71, G, (k. &)=

=1=-A)s(k)+ AV(k,«?){F(k) + iﬁﬁn(k,é) +17, Gn(k.fn)}

n=3

This equation is now rewritten as

(4.13) F(k)+Zgn(k,€)9n(k,§n)+hn(k,é‘)){n(kfn)Z5(k)
where
_ 7/5 - Aynz+2 V(k,g)
(4.14) g (k,0) =
h (k 8) — UR _Ann+2 V(k,é‘) n=12
e 1-Avke) ’

In order to eliminate F(k) from this equation further relations between F(k), &;(k,<;)
and G;(k,&;) are to be obtained. On applying the convolution theorem to equations

(4.10) and (4.11), we obtain
(4.15) Hj(k,fj)zjF(k')WJ(k—k',gj)dk'
(4.16) Gj(k,éj)zTF(k')fj(k—k',gﬂ)dk' , 1=12

Here y7;(k,&;) and Z;(k,&;) are respectively the Fourier transforms of y(x,&;) and

xi(x,&;). The transform w7, (k,&,) is same as y (k, &) . To obtain ,(k,&,) we use



equation (4.8) and the integral representation of the y (x,&) function. Applying the

inverse of the convolution theorem, we get

(417) 7ok, &) =expl-v ki pk—v K/ €]
The transforms 7, (k,&;) are obtained as in equation (3.14)
(4.18) fj(kigj)le*(k)‘?j(k’fj) , 1=12

where H*(Kk) is the Heaviside unit function.
Now changing the variable to k’ in equation (4.13), then multiplying it by
w;(k—k',&;) and integrating over k’ we get

(4.20) 0,(k. &)+ Tdk' 7, (k=K' &) x

Zgn(k',«?)@n(k',énﬂhn(k',g)Gn(k',fn)=l/7,-(k,§,-) , 1=12

Similarly multiplying by ¥, (k —k',&;) we get
(4.21) Gj(k,gj)+jdk' 7 (k=K' &) x

Zz’,gn(k',e)é’n(k',én)+hn(k'.s)Gn(k'.cfn)=;7,-(k,cfj) =12
Thus we have transforrnrfed the slowing down equation to the above coupled Fredholm
integral equations. The temperature dependent resonance integral including the
interaction effect is given by

(4.22) 15 (£)=2156,00,¢,)
6,(0,&,) can be obtained as the solution of the coupled Fredholm integral equations

(4.20) and (4.21). These equations can be arranged to contain one unknown function
defined by

(4.23) (k, &, 5) ZZ ga(k ) 6,(k,5) +h,(k,&)G,(k, &)

Multiplying equation (4.20) by gj(k,e ) and equation (4.21) by hj(k,e ) and adding the

resulting equations and summing over the values of j, we get
(4.24) Ok, &, &)+ [dk oK', &, &) x

Zgj(kyg)ﬁj (k_kllégj) +hj(k75)ﬂ7j (k_klagj)



2
:zgj(klg)l?j (k’éj) +hj(k!g)/?j (k!é:J)
j=1
Using the explicit expression for 7, (k, &) and equation (4.20) we find
(4.25) 6,(0, &)= ———ICD(k)exp[ |k |-k*/&%]dk

Thus, 6,(0, &) is obtained from the solution of the coupled integral equations or using

equations (4.24) and (4.25).
B. Resonance Interaction Effect in the Zero Temperature Limit:

In this section we show that in the zero temperature limit the integral equations
can be reduced to coupled second order differential equations. Taking the limit —oo in

equations (4.20) we get

(4.26) 0, (k, )+ ]Edk'tz.(k—k',oo) x

> 9, ) 0,(k', &) +h, (k') G, (K, &) =7, (k,0) , j=12

n=1

w;(k=k',0) are given by
J— 1 1 1
(4.27) w,(k -k ,oo):zexp(—| k—k'|)

(4.28) 7, (k - k',oo):v?*exp[— vk =K+ gk — k)]

(i) Reduction to coupled differential equations:

We already know that w,(k —k',o) is the Green’s function of the operator

d2

4.29 o)
(4.29) =K

Similarly 7, (k —k',) can be identified as the Green’s function of the operator: 62

2 d? d
(4.30) O,= {de—Z ,ud—k—(,u +v )}

These Green’s functions satisfy the boundary conditions

(4.31) 7, (k —k',oo)‘k:m =0, j=172

Applying the operators (51 and (52 respectively to equation (4.26) for j=1 and 2, we get

(4.32) [ddkzz - JG (k, ) —[g, (k. £) 6, (k, ) +h, (k,£) G, (k, 0)] == 5(K)



and

d? . 4
(4.33) (W—(/f y 2)}92(k,oo)—2|y&92

—v"2[g,(k, £) 6, (k,0) +h, (k, £) G, (k, )| =—v*5 (k)
From the previous Chapter we know that

d

(4.39) Gl(k,oo)=—2i&01

When &,—0, we have

(4.35) 6’2(k,oo)_ je” ()mdx

and

(4.36) Gulk,r) = - Ie’kx f(x )de
P+ (x—p)?

From the above two equatlons we get
21

(4.37) G, (k,00)=— L‘l’k 0, —i,uﬁz(k,oo)}

Thus the coupled dlfferentlal equations (4.32) and (4.33) can be written in terms of

0;(k,) alone. The boundary conditions on &, (k,) can be obtained from equation
(4.26) by putting k=+#cc:

(4.38) 0;(k, )| =0, j=12

Using the explicit expressions for g;(k,¢) and h;(k,&) the differential equations for

0;(k,0) can be written in the matrix notation

d26 Av(k,e) |d@ Av(k,e) |x =
(439) e +2l{@l+@2 ]_—Av(k,g)} dk —|:M1+M2m}9(k,00)——85(k)

where 6 and & are two dimensional vectors given by

(4.40) 0 {ﬂ

92
and
11
(4.41) e{ *Z}
1%

The quantities®,, D,, M, and M, are square matrices of order two defined by



(442) @1:|: 771 772/]/ :|

Vi v, p
_ ) v
(4.43) o, M @) V}
v (m—-mn3) v (1,-1,)
(1492 242 v
(4.44) ml: *7/]2. v (7/2 , ﬂ7722 V)* :|
vV A+py)+u” +2v un,
2 2 2_,2.9 I
(4.45) M :{ *271 27/3 , *7;1 27/3 +2/U(772* n,) v }
var —vs) v, —r)+2vulm,—n,)

From the definition of the transforms &, (k, o) we know that they are continues at k=0.
Further, the delta function on the RHS of equation (4.39) can be replaced by the

discontinuity condition on d & /dk. Thus we have to solve the homogenous system of

second order differential equations.

(4.46) d2é+21[@1+(1) Av(k.e) }dé{mﬁm M}é(k,w):ﬁ

dk? 21— Av(k, &) | dk 21— Av(k, &)
subject to the boundary conditions

(4.47) (@) 6(k,0) >0ask—>tw
(4.48) (b) G(k,)| = O(k»)|

d - d = e
(4.49) ©) - 0k) - &G(k,oo)‘o_— 8

In equation (4.46), 0 denotes a two dimensional null vector. Before attempting to

solve this equation by WKB method we consider the narrow resonance approximation.

(it) Solution in the narrow resonance approximation:
The narrow resonance approximation is obtained by taking the limit e—co. Then the

function 1k, £€)—0 and we get

2 A NR A NR
(4.50) dd%uz@ldg

Since for large value of k the function Uk, £—0, the above equation represents the

~ M, 6™ (k,0) = 0

asymptotic form of equation (4.46) also. Now, we try a solution of the form
(4.51) 6" (k,0) =6, (w) exp(i wk)

Substituting in equation (4.50), we get



(4.52) (WE +2wD, + M, )8, (w) = 0
Here E denotes a unit matrix of order two. For a non-trivial solution 50 (w), wwould be

chosen as the roots of the secular equation

(4.53) det (W?E +2wD, + M, )= 0

Substituting for D, and M; we get a fourth order polynomial equation for w.

(4.54) W'+ 20 (v, + 2, — )+ WAV R (Ut ) 1 P+ 2u(v T, — 2m,)]
W, 0 =D + (7 )+ 20", - ) - 27 4]
@)+ 2+ )+ 20 i, + i |=0

Since the coefficients of various powers of w are real, the four roots will occur as

conjugate pairs. Let them be denoted by

(4.55) Wi =a;+ib, , 1<j<2
where the imaginary parts b; are positive quantities. Therefore, the general solution

6" (k,0) vanishing at #eoare given by

— 2 —_— . +
(4.56) 6" (k,0)=>"C! G, (w!)expliw k) , k>0

j=1
2 —
=3c; 6, (w,)exp(iw; k) , k<0
j=1
Here 90 (wji) are the eigenvectors of the system (4.52). It can be seen that
4.57 G, (W* '
Here |, and d; respectively denote the real and imaginary parts of the second

component of the vector: éo (Wji) . They are defined by

2Win, IV +y; +2un, v

(4.57a) | +id =272 "
! ! WJ72+2WJT771+1+7/12

The boundary conditions (4.48) and (4.49) give
2 - 2 -

(4.58) ZCJ+ 6, (wj+)=ZCj‘ &, (W;)
j=1 j=1

and



2 e e -
(4.59) i3 [cr w4, w)-Crwr d, (w) | =e
1

The fact that 6"%(0,) is real demands that C; and C; should occur as conjugate
pairs. Separating Cji into real and imaginary parts, we get
(4.60) C;=C#iC; ,1<j<2

and using equations (4.55), (4.57), (4.58) and (4.59) we get

(4.61) b,CF+a,C +b,Cf +a,C! =%

Cl+C! =0
d,CF+1,C/ +d,CS+1,C, =0

*2

(blll + a'.l.dl)clR + (alll - bldl)cll + (bzlz + azdz)C; + (azlz - bzdz)czl :VT

Eliminating C and C, from the last two equations we get

(4.62) b, +dl%}cf {bz d, ‘T‘ﬂc; :%
L 2 1 2
i |, —bd, —a,l, +b,d
_blll+a1d1+dla“ S 2}C1R+
i l, —bd, —a,l, +b,d y'2
_b2I2+a2d2+d2a“ S 2}0;&7
and
(4.63) cl =—cy 4G +dCy
Iz _Il
Equation (4.56) shows that
(4.64) 19 e (0) =210 [CF +CF |

Thus we find that once the roots of the polynomial equation (4.54) are obtained, the
resonance integral in the narrow resonance approximation can be easily evaluated.

(ii1) WKB approximation to system of differential equations

For obtaining the solution of the system of equations (4.46), we write as before

(4.65) é(k,oo)=22:cj+ 6, (w;)exp(i w! K —Jk'Sj*(k')dk'j , k>0



2 —
-3¢, 4, (Wj)exp(iwjk—I:Sj(k')dk'j k<0
j=1
Here 90 (w;) are the eigenvectors of the system (4.52) and are given by equation

(4.57). The constants Cji are to be determined. In writing &(k,) in this form, we

have incorporated the asymptotic part of the solution (same as the solution in the
narrow resonance approximation). To ensure the boundary condition (4.47) on 8(k, ),
we have

(4.66) S*(k)>0ask—>tw , j=12

Substituting for 8(k,) in equation (4.46) we get

—dsji N = Av(k, ) + + 2 +
(4.67) {—'_WE ZI{WJ-E D, Dz—l—Av(k,g)}Sj(k)Jr[S (k)] E}QO(WJ)
_ Av(k,e) ~ .
_—1—Av(k,€)M2g00(Wj) , 1<)<2

The upper sign stands for k > 0 and the lower sign for k<0. Applying the boundary
conditions (4.48) and (4.49) we get

(4.68) ic; 0, (w;):zz:c; 6, (W)

ii[cj{wj +57(0)} 8, W) —C! wi +57(0)}d, (w) | =€

When equations (4.67) and solved by the interactive method, S; (k) and S; (k) would

occur as conjugate functions. Therefore we can separate Sji(O) into real and imaginary
parts:

(4.69) Sji(O):SjR(O)iiSJ!(O) , 1< <2

Now, the requirement that &(0,o0) should be real demands that C; and C; to be

conjugate pairs. Using equations (4.60), (4.68) and (4.69), we get exactly similar
relations (4.62) between C} and C; . The differences are the replacements of a; and b
in these equations by

(4.70) a, = a,+5/(0) , 1< j<2

b, = b;+S[(0) , 1< j<2



Once S7(0) and S;(0) are obtained, 6,(0,) and thereafter 1% (o) can be evaluated.
Equation (4.67) is a vector equation for S7 (k) and can be reduced to a scalar equation

by taking dot product with the vector 670 (w}) . Thus we have

ds* Av(k, &)
4.67 T gpdwr—pr—gr 22 gt (k)+ St 2(k
(4.67) m |{w, p; —q; 1_Av(k,€)} F(K)+S7 (k)
__Avlke) e
1-Av(k,e)
where
. (6,1D,18,)
(4.72) P,—ZW
0 0
q+_<éo|D2|éo>
" (616,
. {(61M,16,)

r. =

ALY
Another possibility is to take the first component of the vector equation (4.67). The
resulting equation would be exactly similar to (4.71) but now the quantities p;, g7, and

. .
r; are given by

I +id,
(4.73) p}r = "‘772(]‘/—*1)

| +id,
a; =(m —m)+ @, —774)(‘V—*J)

r=(y? —75){(75 —y2)+ 2%(772 —7.)(, +id,—)} ,1<j<2

In any case we find that the equations to be solved to determine SjR(O) and S} (0) are
very much similar to the types encountered in earlier chapters. The first order
approximation to S;(0) gives

Av(k,e)

(4.74) 1(0)=r; Jexpl2i - p?Mm



Although the integral can be expanded as a power series in A, the resulting integrals are

complicated for analytical evaluation. The results given below for the two overlapping

h232

resonances of T were obtained in the first order approximation by a numerical

evaluation of the integrals (4.74).

(iv) Interaction effect on zero-temperature resonance integrals -Th?2

h232

resonances

The two low energy resonances of T at energies 21.8 and 23.47 eV are
somewhat close together. The resonance parameters given in Appendix-1 show that the
scattering widths are much smaller than the total widths. Therefore resonance potential
interference scattering can be neglected. In table-X we give the zero temperature
resonance integrals with and without the interaction effect for various values of op,.
When interaction between the resonances is neglected, the resonance integrals
calculated in the first and second order perturbation approximations match well.
Therefore the results obtained in the first order perturbation approximation showing the
effect of interaction are of the correct magnitude. The table also contains resonance
integrals calculated in the narrow resonance approximation.

The general observation is that the interaction effect decreases as the moderator
scattering cross-section or, increases. This happens because as on increases, the value
of the resonance integral approaches the infinite dilution limit which corresponds to the
unperturbed 1/e energy distribution. Further it is found that the magnitude of the
interaction effect calculated in the narrow resonance approximation is of appropriate
magnitude.

C. Resonance Interaction Effect At Non-Zero Temperature:

Having solved the problem of resonance interaction in the rigorous way for the
zero temperature-limit, we now turn our attention to the temperature dependent
problem. We mentioned that for fertile nuclides the overlap effect is significant in the
higher energy range. Therefore they can be studied in the narrow resonance
approximation. In the zero temperature limit we have seen that for the low energy
resonances of Th?*? the narrow resonance approximation can be applied to obtain the
interaction effect. Hence we shall discuss this problem further in this approximation
only.



#(€) can be obtained in the narrow resonance approximation from equation (4.1)
by replacing #(e’) and o(e’) in the collision integral by their asymptotic values. This is
equivalent to replacing the integrand in equation (4.5) by 1. Therefore we get

1

(4-75) fNR(X)= )
[1+ viv, +m1}}
j=1
and the resonance integral becomes
1.
(4.76) 160 (&)=2--1
T

where J* is the generalized J-function defined as [66,67]

(4.77) J*ZET W1(X'§1) dx

2

2
D WATRL Y7
j=1

Thus the problem reduces to the evaluation of this complicated function. Haggblom
[65] and Jawas [67] assume that the interaction term yZy, +n,z, is small and therefore

J* can be expanded in a series. Neglecting higher order terms, they approximate J* as

Q

2

. 1% vilriv, vz, |
4.78 J=J- |
(4.78) 2_»[0 {1+)/1Wl+771}(1}{712‘ﬂ1+771)(1} ’

Here the first term J is the ordinary J-function. In evaluating J*, Hwang [51] has

avoided the series expansion by rewriting it as

(479) J*zJ_%T WI{}/ZZWZ +77§ZZ} dX
L+ 2w+ 11+ 7%+, 2, }
=1

—0

An accurate evaluation of J* from equation (4.77) will be quite difficult and is the
reason for separating the overlap part as given in equations (4.78) and (4.79). He then
evaluates the integrals using Jacobi quadrature formulae. In any case it is clear that the
calculation of J* function leads to the evaluation of very complicated integrals.

In the narrow resonance approximation equations (4.20) for j=1 gives

(4.80) o,(k, &)+ [‘;i[yﬁ 0,(k',&,)+ 1, G, (k',&,)] x

'/71(k - k'v§1)dklzl/71(k’ ‘fl)



This equation is obtained by replacing gn(k,£) and ha(k,£) by the constant »> and 7, .
It is possible to eliminate 8,(k,&,) and G, (k,&,) from this equation and obtain a single

equation for @,(k,&). Using equation (4.15), we have

(4.81) [ wk-Kk,8)0,(k.¢,) dk

= [ -k g) de [k, &) F () die
Interchanging the order of integration, we get
(4.82) LHS = T Fk')dk [* gk =k, &) w7, (kK" & )k
Changing the variable of integration k’ in the second integral to (k-k*+k’*), we get
(4.83) LHS = T Fl)dk [* 7,k -k &) 7k -k &, )k

Interchanging the order of integration again and using equation (4.15), we get

['e]

(4.84) LHS = [ (kK" & )ak™ [ F(k™) 7k —k", & ok

—00

=" 7k-Kk.&) 0k .&)dk
Similarly using equation (4.16) we can show that

(4.85) [ wk-k,8)6,(Kk,é,) dk

=" zk-k.&) ok &)dk | n=12
Using equations (4.84) and (4.85) in equation (4.80), we get

(4.86) 0k, &)+ [ dk a(k,&) x

S 2w k=K. &)+ m, 7.k =k, &)ldk=i7,(k, &)

n=1
The kernel of this integral equation is of the displacement type. Therefore on taking the
inverse transform and using the convolution theorem we get
2
(4.87) FO6,E)+FGCE) D v v+ 20 = va (%, &)
n=1

where F(x,&1) given by



(4.88) F(&)=]" expl-ikx)6,(k,&)dk

Solving for F(x,&;) from equation (4.87) and again taking the Fourier transform we get

(4.89) 6k, §1):i I exp(-ikx) 2W1(X, &) dx
2r * )
N 1+ riw;+m5z;
i1

On comparison with equation (4.77) we find that the J* function is given by
(4.90) J =76,0,&)
Now our aim is to solve the integral equation (4.86) using the quadrature method.

Neglecting terms arising from resonance potential interference scattering, we get

(4.91) O(k.&)+ [ dk ok, &) 7 expl- 1k -k (kK 12 f+

v p2expl=v k=K =v' (k=K /& +iu(k -k} | :%exp(—| k|—k/&2)

From the definition of v and & we find that

. 1 €26 1
(4.92) Y = |14 =—(1+t
522 512 erl 12 ( )
To apply the quadrature method we write
(4.93) 6,(k, &)= [6,(k,0)+ gk, &) Jexpl - k* 1 &7

where Hl(k,oo) is the zero temperature part of the solution and is given by equation

(4.56). Substituting from equations (4.92) and (4.93) and applying the quadrature

formula, equation (4.91) can be converted to the system of algebraic equations.
W) & . .
(4.94) Ak )5 Xl )2 18k -k )
J:

exp|(M?—2)k2 /M2 +2k k, /M2 |=S(¢%, ), 1<i<N
Here k; and W; are the roots and weights of the quadrature formula of order N and
E=&/M. Further, Z(& ki) and S(& ki) are given by

(4.95) Z(EK )=rZ expl= & [k j+v" p2expl-v'E [k [+iu& k —tk? /M2
and
(4.96) sk )= exnl- ¢k -0l k)

~& [ k6, (ko)1 (k, ~ K)fexpl- (k2 + 2Kk )M 2



From the integral equation (4.91) we know that the real and imaginary parts of 6’1(k, 51)
and hence that of ¢,(k,&,) are respectively even and odd functions. Using this fact and

arranging the order of the roots and weights of the quadrature formula as indicated in

Chapter-Il, it is possible to reduce (4.94) to a system of N real equations. Choice of the

parameter M= 2.2 +2& and other details which make ¢1(§* ki) to give the J* function

directly are exactly as discussed earlier and hence will not be repeated here.
Using this method we estimated the effect of interaction on the Doppler

h?®2 resonances. Results in Table-XI show that the interaction

coefficients of the T
effect is destructive and leads to a reduction in Doppler coefficient for low temperature.
This is expected because when resonances overlap broadening of the resonances
introduces lesser changes in the neutron cross-sections and hence in the neutron
absorption rate. Once again we note that the effect of interaction decreases as a
moderator scattering cross-section increases.

D. Summary

In this Chapter we extended the Fourier transform method to treat the problem
of interacting resonances of an absorber. For the case of two closely spaced resonances
the slowing down equation was converted to a Fredholm integral equation. In the zero
temperature limit the problem was reduced to the solution of two coupled second order
differential equations. The WKB method was extended to solve these equations. The
temperature dependent problem was analyzed in the narrow resonance approximation
only. Solution of the Fredholm integral equation using the quadrature formulae gave us
a new method to evaluate the generalized J-function. Finally the method of this
Chapter was applied to evaluate the effect of interaction of the two low energy

resonances of Th?%,



Notes:
1.
2.

Table-X

Zero Temperature Resonance integrals of T

h&

Resonances

Resonance Energy 21.8 eV

NR Approximation

WKB Approximation

Om
(barns) | Without With Without interaction With
interaction | interaction | 1-order | 2-order | interaction
20 0.9373 0.9001 0.8206 0.8229 0.7785
30 1.082 1.048 0.9982 0.9988 0.9635
40 1.209 1.178 1.147 1.147 1.116
50 1.324 1.295 1.277 1.277 1.248
Resonance Energy 22.47 eV
om NR Approximation WKB Approximation
(barns) | Without With Without interaction With
interaction | interaction | 1-order | 2-order | interaction
20 1.119 1.084 1.002 1.005 0.9644
30 1.292 1.260 1.221 1.221 1.129
40 1.444 1.415 1.403 1.403 1.374
50 1.582 1.555 1.563 1.563 1.536

Resonance parameters used are given in Appendix-11

Resonance potential interference scattering is neglected.




Table-XI

Doppler Coefficient (10* Al /AT) of Th?*2 Resonances

on R | 21.8eV | | 22.47 eV |

(barns) _ Wlthoyt . Wlth_ . Wlthoyt _ Wlth_
interaction | interaction | interaction | interaction
0-300 3.367 0.9782 2.413 1.166
20 300-600 2.881 4.261 2.395 2.462
600-900 2.551 3.013 2.112 2.352
0-300 4.802 1.600 3.581 1.936
30 300-600 4.056 6.087 3.329 3.965
600-900 3.493 3.955 3.026 3.106
0-300 6.351 2.320 4.830 2.783
40 300-600 5.143 7.765 4.329 5.518
600-900 4.339 5.023 3.851 3.783
0-300 7.931 3.033 6.217 3.668
50 300-600 6.192 9.529 5.249 7.066
600-900 5.140 5.941 4.653 4.469
Notes:

1. Resonance parameters used are given in Appendix-11

2.  Calculations have been done using NR approximation.




CHAPTER-V
FOURIER TRANSFORM METHOD FOR TREATING THE MODERATOR
AND ABSORBER COLLISION INTEGRALS EXACTLY

In all the previous chapters we were working under the approximation that the
moderator collision integral can be treated in the narrow resonance approximation. In
most of the situations this approximation is adequate, however, from a mathematical
standpoint the implications of this approximation are to be analyzed. The present
Chapter will be devoted for this purpose.

The basic problem in resonance absorption theory is the solution of the initial
value problem posed by the slowing down equation and the normalization condition on
#e) viz., #e)~1/e when e>>e.. In treating the moderator collision integral in the
narrow resonance approximation, the asymptotic form of ¢(e) is required and we were
using the normalization condition explicitly in the asymptotic form. The resulting
equation is an inhomogeneous equation. Thus we find that the basic structure of the
problem is modified by the introduction of narrow resonance approximation for
moderator collision integral in that a homogenous equation is converted into an
inhomogeneous equation. The main aim of this Chapter is to study the mathematical
properties of the original homogenous equation and the initial value problem using
Fourier transforms. In order to simplify the treatment we shall assume that resonance
potential interference scattering can be neglected.

A: Derivation of the Freedom Integral Equation:

The equation to be treated in this situation is (1.23). Substituting the resonance

cross-sections, equation (1.23) becomes

(5.0 Lol 0=""2 Tty AT b vty

m X

This equation shows that for large values of x when, w(y, &)= 0 for x<y<x+¢, f(X) =c,

a constant, is a solution. This constant is to be normalized to unity so that resonance
integral is given by equation (1.32). Introducing the discontinuity factors H(x,y,&) and

H(X,y,&m), We get

(52) (e w)f(x):(l—mzdk'v(k',me-‘k‘%ze‘ky f(y)dy



+ AT dk'v(k', £)e iieikym y2w)f(y)dy

Here, v(k,¢,,) is defined as

63 v ey) =428
ike,
In terms of F(k) and &k, <), equation (5.3) can be rewritten as
(5.4) b+ 72w a)]f (== A) [ die v(Kk,5,)e™ F(K)

+AT dk' v(k', &) e [F (k') + 2 0(k',&)]
On Fourier transformation we get
(55) [L-Av(ke) ~Q- Ak, e,) IF(K)OK, &) +] 72 12 vik,e) ok, £)=0
Our aim is to convert this relation between F(k) and AKk,&) into an equation in &Kk,&).
But we notice that
(5.6) [1-Av(k,e) —(1- A)v(k,s,)]|=0at k=0
The zero of this function at k=0 is of first order. Therefore F(k) can be a distribution

[52] and is given by

(2 —r2vk,0)ok. &) | _
(5.7) F(k)+PL—Av(k,g)—(l—A)v(k,gm) =215(K)

The alphabet P in front of the square bracket denotes the principle value of the terms

inside and A is an arbitrary constant. The above equation can be rewritten as

58) F(K)+72 0k, &) + [R(kk)} ok.&) = 1 5(K)

where R(K) is regular at k=0 and is given by

59) RO _ Aly? =72) vk, 2)+ (L= A vk, ,)
' k 1-Av(k,&)—(1- Ap(k,e,)

Changing the variable in equation (5.8) to k’, multiplying by w(k-k' &) and

integrating over k’ we get

610 ok KO oK. oK

+pj 7k -k g)R(k)e(k Hdk'=1w(k, &)

In obtaining this equatlon we have made use of the relation (2.14). To complete the

derivation of the Fredholm integral equation we have to evaluate the constant, 4. So far



we have not made use of the normalization condition of f(x). Thus it is clear that A is to

be obtained using this condition. Taking the inverse transform of equation (5.8) we get

(5.11) f(x)+72 £(x) w(x,&)+P j exp(— ikx)——~ ( ) g 0(k, &) dk =2
Substituting for &k, &) from equation (2.8) we find

(5.12) F0+ 7 100wk &)+ = [ 1) w(y,) Z(x- y)dy =2
where -

(5.13) Z(x-y) =P ]O exp[-ik(x - y)] Rk dk

Since R(K) is analytic in the lower half of the complex plane, Z(x-y) can be evaluated
easily using the residue theorem when (x-y)>0. Thus we get [52]
(5.14) Z(x-y) =-7ziR(0) , (x-y)>0

Ny (2 - Ar2) 0o

Ac+(1-A)g,
When (x-y)< 0, the poles of R(k) in the upper half of the complex plane also contribute

to the integral. For our purpose it is sufficient to obtain the result (5.14). Equation
(5.12) can now be rewritten as

(5.15) FO)+77 £00 w(x€)
o= P W) p(1,6) Z(x-y)dy—Q [ 1) wly, &)y =2
T X —0

Taking the limit x—o0and using the normalization condition on f (x) we get

(5.16) 2=1- 2 [ 1) p(y.8) dy -1-Q 00.8)
Therefore equation (5.10)_Becomes
(5.17) ok, &) +71 W(k -k',&) o(k’, &) dk’
+P j 7k-k.0 8 o Hae-[t-Qo0.o)7 k. ¢)

If 6(0,¢&) is obtalned from this equation, lew($) equals 21, 6(0,¢)

Introduction of the arbitrary constant A and the above method of determining it
did not arise in earlier chapters. This happened because in evaluating the moderator
collision integral in the narrow resonance approximation, we used the normalization

condition on f(x) explicitly. The central point in the above derivation is the realization



that F(K) is a distribution [52]. The steps involved in going from equation (5.5) to (5.7)
are similar to those encountered in Case’s method of solving plane geometry transport
problems [53].

In the narrow resonance approximation to moderator collision integral ¢, — o«
and we have
(5.18) Lim (g, — ©) Q=0
Lim (e, = o) v(k,&,)=0
Therefore R(k)/k becomes regular at k=0 and we get back equation (2.15) of Chapter-II.

B Zero Temperature Limit:

In this limit equation (5.17) becomes
2
(5.19) 6’(k,oo)+7/—1jexp(—|k—k'|) O(k', ) dk'

R(k )

+pjexp( Ik —k) 25 o, o) dk'=[1- Q 60, 00)] exp(~ k)

In the following it WI|| be shown that A(k,) satisfies a second order differential
equation. Because of the presence of the principal value term we do not use the fact that
15 exp (-] k =k’|) is the Green’s function of the operator (d*/dk*-1). For k>z, a small

positive constant, equation (5.10) can be written as

R(k)

(5.20) O(k, ) + j =22 L exp(—k + k') (k') dk’

2 K
R (k")
k'
(

+P j LR exp(—k +k') 6(k', ) dk’

+ exp(-k + k") 4(k', ) dk’

=

)exp(k k') (k',0)dk'

Ny 8 N —y X

1
=[1-Q0(0,) | exp(-k )
For brevity we have used the notation,
R'(k) _R(kK) .
Kk + 7
Differentiating equation (5.20) with respect to k we get

(5.21)



1R(k)

(5.22) —9(k 0) — j exp(—k + k') O(k', ) dk'

PT L RIfk)exp( k+K') O(k',o0) dk’

R(k')
k'
“(k

exp(—=k +k") 4(k', ) dk’

2

K ey 8 C— X

N |- N|I—\

. D exp(k —k') 6(k',00) dk

-[1-Qe(, oo)] exp(—k )

Differentiating with respect to k agaln and using equation (5.20) we get

d2 R(k)
(5.23) Sz Ok~ [ . ﬂl}e(k ©)=0 , k>0

Here B =1+ y2. When k<-7, equation (5.19) can be written as

(5.24) 9(k,oo)+_k[ > R (k)

exp(-k +k") 8(k', ) dk’

+ !% () p(k k) (ko) dc

K
R*(k")

exp(-k + k") 4(k', ) dk’

K
- % Rék)exp(k k') Ok, 00) dk’

=[1-Qo(, oo)] exp(k )
Differentiating with respect to k we get

d ¢t 1R (k)
(5.25) d—ke(k,oo)_ j

exp(—k + k') @(k', ) dk’

N |

; {% Rk )exp(k—k') o(k',0) dk’

+

<
PY)

*
~
~
N—r

exp(k —k') O(k', ) dk’

)exp(k k') O(k',0) dk'

_ [1—Q0(0,00)]%9Xp(k)

Differentiating with respect to k again,



(5.26) f—ée(k,w)—{¥+ﬂf}e(k,w):o , k<0
Thus, O(k,o) satisfies the same differential equation for the positive and negative
halves of the real axis.

The boundary conditions (2.27) and (2.28) on d(k,x) are applicable here also.
In order to solve the above boundary value problem, one more condition on at k=0 is
required. Putting k=+7 and -z respectively in equations (5.22) and (5.25) and
subtracting the resulting equations we get

dg|  do

5.27 — —
.27) dk dk

-7 +7

_f %[R*(—k')e(—k',oo)—R*(k')ﬁ(k',oo)]%exp(—f"'k') dk’
_T %[R*(_k-)e(_k',oo)—R*(k')e(k',oo)]%exp(—ﬂk') dk’
_T %[R*(_k')e(—k',oo)—R*(k')6’(k',00)]%EXD(T—k') dk’

- Qo oo)]%exp(f )

In the limit z—0, the integral terms in the above equation cancel out and we get

déo do
d_kir - Wﬂ_ = [1—Q9(0,00)]

This completes the derivation of the differential equation and the boundary conditions.

(5.28)

When ¢, — oo equation (5.28) reduces to (2.29) obtained in Chapter-II.

The origin k=0 is a regular singular point of the differential equations (5.23) and
(5.26) [68]. Further, the singularity is of first order. Therefore both the independent
solutions of the differential equations are regular at k=0 [68]. Methods for solving these
equations to evaluate the resonance integral have not been developed completely and
will not be presented here.

D. Summary

In this Chapter we generalized the Fourier transform method relaxing the
assumption of narrow resonance approximation to the moderator collision integral. The
initial value problem posed by the homogenous equation (5.1) and the normalization

condition on f(x) has been reduced to a boundary value problem in the Fourier



transform space. This reduction removes the discontinuous nature of the kernel of the
integral equation for f(x). In this process we found it necessary to make use of
elementary ideas from the theory of distributions [52]. In the zero temperature limit we

reduced the problem to solving a second order differential equation.



Conclusions

The phenomenon of resonance absorption plays a crucial role in determining the
criticality, conversion ratios and the reactivity coefficients of nuclear reactor systems.
Thus it has been the subject of many investigations in the past. Essentially the problem
involves the solution of the integral equation of neutron slowing down theory when the
parameters of the equation, namely the cross-sections, are given by the Doppler
broadened Breit-Wigner formulae. In these investigations the quantity of direct
physical interest is not the detailed solution but an integral parameter called the
resonance integral which determines the total absorption rate in the resonance.

Because of the doubly discontinuous nature of the kernel of the slowing down
equation and the complicated form of the Doppler broadened cross-sections (only the
integral representations being available) it is generally not possible to use the analytical
methods for solving this problem. Recourse has therefore to be made to the numerical
methods. However there are several questions for which numerical methods are
inappropriate, for example, the assessment of the errors in Doppler coefficient
computations due to the neglect ion of the overlapping of neighboring resonances.
Further, the analytical methods throw greater light on the basic structure of the
equation. Our aim in this thesis has been to study as to how far the standard techniques
of applied Mathematics can be used to obtain the solution of this problem.

We have seen that by using the Fourier transforms the slowing down equation
can be converted into an integral equation with continuous kernel — in fact a Fredholm
integral equation over the interval (-o0,00). Further the cross-sections have simple
analytical representations in the Fourier space. Lastly, the Fourier transform can be so
defined as to directly give the resonance integral, being the value at the origin, thus
avoiding the need of later evaluation of a linear functional of the solution vector. The
use of Fourier transforms thus provides an opportunity to analytically solve some of the
resonance absorption problems.

The three Chapters (Chapter-11 to IV) of this thesis have been devoted to the
evaluation of resonance integrals analytically as far as possible. Thus we have found
that at zero temperature the problem can be reduced to the solution of a second order
differential equation which can be solved by the WKB method. We have thus derived
accurate expressions for the zero temperature resonance integrals. Various

complications like resonance potential interference scattering or the overlap of



neighboring resonances pose further difficulties, as in other methods, but are not
insurmountable. At higher temperatures, for evaluating Doppler coefficients, we have
to solve the Fourier transformed integral equation itself. Here we observed that the
corrections due to higher temperatures, that is, those related to the Doppler coefficients,
can be obtained by the use of Gauss-Hermite quadratures for solving the integral
equation. Again various complications pose further problems but they can all be
accounted for in a successful manner.

In the last Chapter we have studied the use of Fourier transforms for solving the
homogenous form of the integral equation of slowing down theory. As is well known
the integral transforms are generally used for solving inhomogeneous equations.
However we have seen that in this case the Fourier transformed solution is a
distribution in the sense of Schwarts and that the normalization condition determines
the singular part of this distribution. The regular part of this distribution is thus
determined by solving an inhomogeneous equation whose free term is determined by
the singular part, that is, the normalization condition.

In conclusion, therefore, we have seen that the use of some standard techniques
of applied Mathematics like Fourier transforms WKB method and Gauss-Hermite
quadratures can be profitably used to analytically solve some resonance absorption
problems. We believe that this is a common occurrence and that classical methods with
slight modifications can profitably be used to study many useful problems of reactor
physics and other practical subjects.

XXXXX



APPENDIX-I
The integrals required for the evaluation of the zero temperature resonance

integrals are

(1.1) ()=]e*v"(ke)dk , n=12,3

(1.2) Von(c )=Tv (k, S)Te “vi (K, e), (nm)=(1D), (12), (2))
The real and imaginary :)arts of |n(kc) are given by

(1.3) Rln(c):Ie‘k {%} cos(nck / 2)dk

(1.4) Ie {S'”C:‘/(/Z } sin(nck / 2)dk

These integrals can be evaluated analytically. For instance, consider Rl1(c) given by

(1.5) cRI

Ie‘k sin ck/2 cos(ck /2)dk
0

J.e‘k sin(ck) ik
3 k

Differentiating with respect to c, we get

d <, 1
(1.6) E[CRH(C)]:_([E cos(ck )dk o

Now integrating with respect to ¢, and noting that ¢ Rll(c): 0 at c=0, we get

¢ 1 , _
(1.7) CRIl(C):~£1+c'2 dc' = tan™*(c)
Thus we find
(1.8) RI,(c) =%tan‘1(c)

Proceeding exactly in the same way we find
1

1.9 I,(c) =——In{l+c®

(19) (€) =5 nf+e?)

For n=2, one of the integrals to be evaluated is



(1.10) Rlz(c)=Te‘k {%T [2cos(ck /2)—-1] dk

2 1
=F31(C)—W Ji(c/2)

where
© 2
(1.11) Ie {sm (ck) }
0

Differentiating with respect to ¢

(1.12) %Jl(c) J. e ZsmlE ck) cos(ck )dk =tan*(2c)

0
where we have used equations (1.5) and (1.7). Integrating equation (1.12) with respect to
¢, and noting that Ji(c) =0 at c= 0, we get

(1.13) J(c)=c tan‘1(2c)—%ln(1+ ac?)
Therefore Rl,(c) becomes
2 c 1 1+4c?
1.14 Rl,(c)= = tan™ =—I
(114) o(¢)= = tan [MCZ} 27 n&mz)z}
The other integral for n=2 is given by
1

(1.15) Ilz(c):WJz(clz)
where

0 . 2
(1.16) J,c)=[e™" {#} sin(2ck) dk

0
Differentiating with respect to ¢

d

(1.17) 10 J2(0)=2[K,(2¢)-K, (c)]
where Ky(c) is given by

] H 2
(1.18) K,(c)=e™" S'”T(Ck) dk

0
Now, dK,/dc is found to be
(1.19) di K, ( =2Ie sin(ck) cos(ck) dk = 1+24(1:c2



Since Ky(c)=0 at c=0, we get

(1.20) Kl(c):%ln(1+ ac?)
Therefore equation (1.17) becomes
450l 2)_1 2
(1.21) o J(c)= 2|n(1+16c ) 5 In(l+4c?)
Integrating with respect to c, using the result J,(c)=0 at c=0 and equation (I.15) we get
1, [1+4c®| 1 2¢?
1.22 I,(c)= =1 ——tan™
(122) :(¢) c n{ 1+c? } e LJFSCZ}
Proceeding along these lines Rl3(c) and Il3(c) can be evaluated. Final results are:
2
(1.23) Rl,(c)= Z—i{(gc 3_ 1) tan(3c) - (4¢? —1)tan*(2¢) + (¢ —1)tan1(c)}
3 (L+4c?)
+ In
2c2 | {1+9c? )L +c?)
2
(1.24) I1,(c)= 4—2’{ 3 3_1 In(1+9¢?)- (4c> ~1)Inf1+ 4c?)+ (> - 1)inf1+ cz)}

TS

Real part of the double integral V11(c) is

ok sin (ck')
k'

(1.25) c? RV, (c) j sin( Ck IR gk j dk’

T1- cos ck _ 1—cos(ck’)
e kf e

dk'

Now, consider the integral

0

(1.26) L(c.k) :_fe

k

i sin(ck')

Differentiating with respect to ¢ we get
(1.27) I e™ cos(ck’)
k

On integration by parts we find

d K . , d
(1.28) EJl(c,k):e [cos(ck) —cxsin(ck)]-c EJl(c,k)



Since J;(c)=0 at c=0, we get

(1.29) J,(c,k)= Toc?

. JC- cos(c'k) —c'xsin(c'k)
0
Proceeding exactly in the same way we can show that

o 1—cos(ck')
k'

(1.30) 3, T e dk'

. fsin(c'k) —c'xcos(c'k)
-° -([ 1+c¢'?

Therefore equation (1.25) becomes

(1.31) ¢? RV, (c) JC' dc' ﬁe k{sin(c‘+c)k _sin(lf'k)}dk

1+c'? k

o Te_k{sin(c'k)sin(ck) +1—cos(ck) cos(c'k)}dk}

) k k

The first integral in the square bracket can be evaluated using equations (1.5) and (1.7).

The other integrals can be shown to be

T _csin(c'k)sin(ck)

(1.32) K(c.c) = [e ” dk
|1+ (cHcy
=

(1.33) K,(c,c') = TekM cos(ck)dk

:%In[{1+(c+ c') } {1+(c —c'f }]—%In(pr c?)

The steps involved in getting these results are as given earlier. Therefore equation
(1.31) becomes

] [tan‘l(c + c')—%ln(1+ c+c' 2)}

':[ [tan %In(1+ c'z)}

The last integration can be performed and we get

) _F de
(1.34) c2 RV, (c)= ! e




(1.35) :cizﬁ {tan c+c')—%|n(1+c+c'2)H
—~ th {(tan1 c)z— {% In(1+ c Z)H

Thus we have reduced the double integral to a single integral. Imaginary part of V11(c)

is given by
_fsin(ck) ¢ 1-cos(ck) .,
(1.36) IV, (c)= dek [e — ek

0 k

+J>1—coks(ck) ij ok SN E(ck) die

0 k

Proceeding along the lines given earlier, it can be reduced to the form

{ {%} n c'tan‘l{mﬂ

The integrals in equations (1.35) and (1.37) have to be evaluated numerically. It was not

(1.37) 11 : izj

possible to simplify Vi,(c) and V,1(c). In the calculations they were evaluated using
Simpson’s rule.
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APPENDIX-II

Parameters of U2 Resonances

E: (eV) I'h(eV) It (eV) oo (barns)
6.68 0.0015 0.025 22058.9
21.0 0.0089 0.025 32545.1
36.8 0.034 0.025 40765.6
66.3 0.018 0.025 16436.3
81.1 0.002 0.025 2377.7
102.8 0.067 0.025 18442.0
116.8 0.014 0.025 8000.8
192.0 0.140 0.025 11600.0
209.0 0.060 0.025 8792.3
238.0 0.028 0.025 5778.6
1. Statistical spin factor =1
2. Potential scattering cross-section = 10 barns
3. Scattering cross-section of hydrogen = 20.2 barns
Parameters of Th=** Resonances
E: (eV) I'h(eV) It (eV) oo (barns)
21.8 0.0021 0.0245 9427.5
23.47 0.004 0.0245 15567.4

4. Statistical spin factor = 1

5. Potential scattering cross-section = 10 barns
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