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CHAPTER-I 

INTRODUCTION 

 

A. Introduction to Slowing Down Theory: 

The basic aspect of nuclear reactor theory is the study of the neutron density 

distribution which gives information on the average behavior of neutrons in the reactor 

system. In the general situation, the neutron density is a function of time and phase space 

co-ordinates. It satisfies the neutron transport equation, which is a linear form of the 

Boltzmann equation, stating neutron conservation in an elemental volume of phase space 

[1,2]. In this approach to reactor theory, it is tacitly assumed that neutron density is 

sufficiently large (~ 108 /c.c) so that the study of the average behavior is adequate for 

many purposes. At the same time it is also implied that the neutron density is much 

smaller than the density of reactor medium nuclei (~ 1022/c.c) so that the rate of neutron-

neutron interactions is negligible in comparison to that with the nuclei. The simplification 

offered by this approximation is the linearity of the transport equation in neutron density. 

The nature of neutron-nucleus interactions enters into the transport equation as 

cross-sections, and usually the interactions due to the magnetic moment of the neutron 

are neglected. Even though the interaction cross-sections have their origin in quantum 

mechanical principles, the description offered by the transport equation is purely classical 

in the sense that neutrons are considered as point particles. 

These assumptions mentioned so far are quite adequate for most of the reactor 

applications. Even then the transport equation poses many problems, partly due to its 

mathematical structure and partly due to the heterogeneous arrangement of materials in 

the reactor and the complicated dependence of the cross-sections on neutron energy. 

These facts necessitate the introduction of further simplifications. For instance, one 

considers an infinite homogeneous medium and investigates the distribution of neutrons 

in energy. Similarly, to gain insight in to the spatial and angular distribution of neutrons, 

one usually assumes that they can be classified as belonging to one or two energy groups. 

The energy range of interest in reactor physics can be broadly classified as fast, 

resonance and thermal regions. In the energy range covering the first two regions, usually 



known as slowing down region, neutrons can only loose their energy in scattering 

collisions. In the third region, known as thermal region, they ca either lose or gain energy 

in scattering collisions. This happens due to the thermal motion of the scattering nuclei. 

Main difficulty in the analytical treatment of neutron slowing down originates 

from the resonance structure of the cross-sections foe neutron interaction with fissile and 

fertile nuclei. Usually in nuclear reactors, resonance absorbers are lumped to reduce 

neutron capture in these resonances. Hence a rigorous treatment of the problem should 

start from the space dependent form of the transport equation. However, it has been 

shown by several investigators [3-6] that, to a good accuracy, this space dependent 

problem can be reduced to an equivalent infinite homogeneous medium problem. 

The necessary steps involved to show this equivalence are the introduction of the 

“flat flux” approximation in the moderator and absorber regions and the asymptotic or 

unperturbed form of neutron energy distribution function in the moderator collision 

integrals of the transport equation. This enables one to write the equation in terms of the 

“first flight escape probability” for neutrons from the absorber regions. Use of the 

rational forms for the escape probability makes further simplifications. Then the problem 

becomes identical to that in an infinite medium where the resonance absorber and a 

fictitious moderator with energy independent scattering cross-section are homogeneously 

mixed together. At any rate, space independent equation will be the starting point for the 

discussion of even space dependent resonance absorption problems. 

Foe the case of an infinite homogeneous medium, in the time independent 

situation, the neutron transport equation reduces to an integral equation for the neutron 

flux. The kernel of this integral equation has discontinuities arising from the finite energy 

loss suffered by a neutron in a scattering collision with the nuclide (except in the case of 

scattering from protons). The physical reason for this originates from the laws of 

conservation of energy and linear momentum in collisions. The doubly discontinuous 

nature of the kernel makes the integral equation of slowing down theory different from 

the class of integral equations well studied extensively in mathematical physics, viz., the 

Fredholm and Voltera equations. It turns out that in just two situations, the slowing down 

equation can be solved exactly. Firstly, when the moderating medium contains only 

hydrogen nuclei, with arbitrary energy dependence for cross-sections, an exact solution 



can be obtained [2]. The second situation arises when the medium contains one 

moderating element having energy independent cross-sections [7, 8]. 

In the fast energy range, presence of inelastic mode of energy degradation [9], and 

the anisotropic scattering [2, 10] in the centre of mass system complicates the kernel of 

the integral equation. However, in the energy range extending up to a few keV, the 

complications introduced by these processes can be neglected. 

In the next few sections, we introduce the problem of resonance absorption 

through a discussion of the resonance cross-sections, the slowing down equation, etc,. 

This will be followed by a review of the presently known methods of treating this 

problem. Towards the end of the Chapter, we will be giving a brief summary of the 

present work. 

B. Resonance Cross-Sections: 

The low energy resonances in the neutron cross-section of fertile elements can be 

well represented by the single level Breit-Wigner formulae. The macroscopic scattering 

and absorption cross-sections corresponding to neutron energy e are given by 
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Here, λ , which equals λ / 2π, denotes the reduced de Broglie wavelength. Γ, Γn and Γr 

are, respectively, the total, scattering and absorption width of the resonance and er is the 

resonance energy. R is the potential scattering radius of the nuclide and the statistical spin 

factor of the nucleus gJ equals (2J+1)/(2I+1) where I and J, respectively, denote the spin 

quantum number of the compound nucleus and target nucleus states. The energy 

dependence of the scattering width is expressed as Γn=Γn(er)(e/er)1/2, but that of the total 

width can be neglected for most of the resonances of importance [1]. With the 

introduction of the quantities like peak cross-section σ0, potential scattering cross-section 

σp, etc., defined by the relations: 
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the expressions for the macroscopic cross-sections can be rewritten as 
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The factor (e/er)1/2 appearing in the expression for σa gives rise to the “1/v” 

variation of the absorption cross-section far away from the resonance. In the following 

parts of the thesis, we will equate this factor to unity, assuming that the contributrion 

from this “1/v” absorption cross-section can be added separately to that due to the 

resonance structure in cross-sections. All the other parameters appearing in the above two 

equations are energy independent. The energy variable e appearing in equations (1.1) and 

(1.2) is the energy of the neutron nucleus pair in the centre of mass system. If the nucleus 

is assumed to be at rest before the collision, e is proportional to the energy of the neutron 

in the laboratory co-ordinate system. The proportionality constant is related to the mass 

number of the nucleus MN, and equals MN /(MN+1). For heavy elements, the factor is very 

close to unity and the energy variable appearing the expression for cross-sections can be 

taken to be the neutron energy in the laboratory system. These formulae are applicable 

when the medium containing the resonance absorbers is at absolute zero temperature. 

When the medium is at any finite temperature, the nuclei are in motion and have an 

energy distribution corresponding to the temperature of the medium. For a neutron 

energy e0, the energy e of the neutron nucleus pair will vary with the thermal energy of 

the nucleus. This effect is usually termed as Doppler-effect. Therefore, the cross-sections 

are to be averaged over the energy distribution of the nuclei. The velocity (V
r

) 

distribution of the nuclei can be assumed to be represented by the Maxwellian 

distribution function corresponding to the physical temperature of the medium [1, 2]. The 

resonance cross-sections can be thus be defined as  
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Introducing the Maxwellian velocity distribution function corresponding to the 

temperature T, 
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The temperature dependent cross-section can be written in terms of the familiar ψ and χ 

function [1] 
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Here ξ is a parameter depending on the temperature of the medium, and is given by the 

expression Γ/(4erkT/MN)1/2. The ψ and χ functions have only their integral representations 

given by 
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The non-availability of analytical expressions for these functions constitutes one of the 

difficulties in the development of analytical methods for treating the slowing down 

problems in presence of resonance absorbers [11]. It is useful to note that as T goes to 

zero, ξ tends to ∞ and  
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where δ(x-y) is the Dirac delta function. Thus in the limit of zero temperature of the 

medium, the ψ and χ functions tend to the Lorentzian forms, and the cross-sections 

assume the Breit-Wigner shapes given by equations (1.7) and (1.8). 

C. The Infinite Medium Slowing Down Equation: 

As was pointed out earlier, to determine the energy distribution of neutrons in an 

infinite homogeneous medium, one has to start with the space independent transport 

equation. For the case of a mixture of a resonance absorber and a moderator, the time 



independent equation (assuming isotropic scattering in the centre of mass system) is 

given by [1, 2] 
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where Φ(e) is the neutron flux in unit energy interval at e. S(e) is the source of neutrons 

appearing in unit energy interval at e, while Σm and Σs(e) are, respectively, the 

macroscopic scattering cross-section of the moderator and absorber. Σa(e) is the 

macroscopic absorption cross-section of the absorber. αm and α are, respectively, related 

to the mass number of the moderator and absorber nuclides. For example, α is given by 

(MN-1)2/(MN+1)2. In writing equation (1.15), we have assumed that the moderator does 

not absorb neutrons, and have an energy independent scattering cross-section. In the 

resonance energy region, both these assumptions can be seen to be applicable to the 

moderators of interest in reactor physics. 

Fission neutrons are distributed in energy, the average energy is about 2 MeV. 

These neutrons in a reactor medium do not contribute directly to the neutron flux in the 

energy region of isolated resonances of the absorber. Further, it is well known that, in the 

absence of absorption and far away from resonances, the neutron flux distribution has a 

“1/e” behavior., Thus in resonance absorption theory one is left to solving the 

homogeneous part of equation (1.15) with the normalization condition that the flux has a 

“1/e” shape above the resonance. 

The resonances of the absorber are said to be well separated if the separation 

between two resonances is more than three or four times the average logarithmic energy 

decrement. For such resonances, one introduces the assumption of recovery of the 

asymptotic distribution between the resonances. This makes it possible to calculate the 

neutron absorption rate in these resonances independently. The average separation (in 

lethargy space for resolved resonances of U238 is of the order of 4.5, and is several times 

the average logarithmic energy decrement 0.0084. Thus the assumption of the flux 

recovery is indeed satisfied here. Over, a major part of this thesis, we shall be working 

under this approximation. 



Dividing by the number of absorber nuclei in unit volume Nf, the homogeneous 

part of equation (1.15) becomes 
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Here we have introduced the quantity σm which is the macroscopic moderator scattering 

cross-section per absorber nucleus. That is σ m=Σm /Nf. 

The resonance cross-sections take a simplified form in the variable x rather than 

e. Therefore, it is natural to change the variable in equation (1.16) from e to x [12, 13]. 

To do this, we define the variable f(e)= e Φ(e). The equation for f(e) becomes 
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It is clear that the form of f(e) far away from the resonance should be independent of e. 
Changing to the variable x in equation (1.17) we get 
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where we have introduced the quantities εm and ε 
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The resonance absorber is a heavy element and α is close to unity. Therefore the 

upper limit in the second integral term in equation (1.18), viz., (x+ε)/α, can be 

approximated by  

(1.21)  ε
α
ε

+≈
+ xx  

The accuracy obtained on employing the same approximation in the upper limit of the 

moderator collision integral term may at first seem to be quite doubtful. However, the 

moderator collision integral affects f(x) in a very minor way only. This happens because 



εm itself is a large quantity due to the small value of αm. Further, over major part of the 

range of integration of this term, f(x) has its asymptotic form. Comparisons of the 

resonance integral obtained from the numerical solution of equation (1.18) with and 

without the approximation  
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m xx ε
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have shown that the error introduced by this is negligible [14]. 

The ratio of the natural width of the resonance to the resonance-energy Γ/er is 

very small for almost all resonances in the resonance region. Therefore factors like 

(1+Γx/2er) appearing in the integral terms of equation (1.18) can be approximated to 

unity [12,14]. Thus one obtains the following simplified equation for f(x) 
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As has been pointed out by several investigators [12,14,15], the implicit 

assumption in deriving the above equation is the approximation of the integral operators 

in the slowing does equation. For instance, the absorber collision integral is replaced as  
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The above replacement does not give the asymptotic value of the neutron flux 

well below the resonance [15]. It is well known that the magnitude of the neutron flux 

well below the resonance differs from that above the resonance by a factor which equals 

the resonance escape probability [2]. The modified form of the integral operator makes 

the asymptotic values of the neutron flux above the below the resonance same. The error 

introduced by this in evaluating the absorption rate in resonances in the epithermal region 

has been well established and has been found to be negligible [14,15]. We shall base all 

our further discussions on equation (1.23) 

D. Resonance Escape Probablity And Resonance Integral: 

Even though the quantity of prime interest is the neutron energy distribution in the 

resonance energy region, the integral parameters like resonance escape probability and 

resonance integral directly give the relevance of resonance absorption in reactor systems. 



If the source of energy well above the resonance emits one neutron per second, the 

resonance escape probability is given by 

(1.25)   Ap −=1

where A is the fraction of neutrons absorbed in the resonance. It is given by 
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Assuming that A is much smaller than 1, the expression for p can be written as [2] 
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where 〉∑〈 sξ  is the average slowing down power of the mixture of elements, the 

resonance escape probability becomes 

(1.29)  ⎥
⎦

⎤
⎢
⎣

⎡
〉∑〈

−= eff
s

f I
N

p
 

exp
ξ

 

When the source emits one neutron per second in an infinite non-absorbing homogeneous 

medium, the flux distribution away from the source neutron energy becomes 1/ 〉∑〈 sξ e 

[2]. When expressed in the lethargy variable it becomes the constant value 1/ 〉∑〈 sξ [2]. 

Thus the effective resonance integral is so defined that on multiplication with the 

asymptotic flux distribution in the lethargy variable it gives the absorption rate in the 

resonance. 

It is useful to normalize the source strength to 〉∑〈 sξ  so that the asymptotic flux 

distribution above the resonance is 1/e, in energy space or just 1 in lethargy space. If Φ(e) 

is obtained from equation (1.16) with this normalization, the constant factor appearing in 

the expression for Ieff drops out. We shall be following this convention in the following 

parts of the thesis.  In terms of the quantity f(x) the expression for Ieff becomes 
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As was explained in the last section of the factor (1+Γx/2er) can be approximated 

to unity. Using the expression for a given in equation (1.11), we find that 

(1.31)  ( ) ∫
Γ

=
resonancer

r
eff dxxfx

e
I )(),(

2
0 ξψσξ  

The absorption cross-section or equivalently the ψ function goes to negligible 

values beyond the region of influence of the resonance. Therefore the limits of integration 

in the above expression can be extended to cover the entire range of x.  Introducing the 

infinite dilution integral Io, which equals πσ0Γr /2er, the expression for Ieff becomes 
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It can be seen from equation (1.16) that in the limit of infinite dilution of the 

absorber, Φ(e) approaches the 1/e form. Alternatively f(x) tends to 1 and the effective 

resonance integral becomes Io. In obtaining the above result one should make use of the 

fact that the integral of the ψ function is π [2]. Thus we are left with the problem of 

evaluating the effective resonance integral from equation (1.32) and f(x) is obtained as the 

solution of equation (1.23) with the condition that it goes to 1 when x → ∞. In the 

remaining part of this chapter, we shall briefly discuss the well known approximation 

techniques developed for this purpose. 

E. Well Known Approximation Methods for Evaluating the Resonance Integral: 

Since the difficulty in solving the integral equation (1.23) is with the collision 

integral terms, approximation methods have been designed to simplify them. The earliest 

and those obtained from considerations of the nature of the resonance are due to Wigner 

[16, 17]. They are known as narrow resonance (N.R.) and wide resonance (W.R.) 

approximations.  

1. Narrow resonance and Wide resonance approximations:

For the purpose of identifying a resonance as narrow or wide Wigner introduced 

the concept of practical width ΓP. This is defined as the part of the energy region over 

which the total resonance cross-section is more than the potential scattering cross-section. 

Neglecting resonance potential interference scattering term from the expression for S, it 

is readily seen that this definition for the practical width gives the expression [2]. 
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However, this definition does not include the effect of the scatterer on the resonance. To 

include this effect, Bell and Glasstone [1] defines practical width as the energy region 

over which the neutron flux distribution differs from the unperturbed distribution by a 

factor of 2 or more.  They give the expression 
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The maximum energy that a neutron of resonance energy can lose in a scattering 

collision with the absorber nuclide is er(1-α). If ΓP is much smaller than er(1-α), the 

resonance is said to be narrow. It can be seen from equation (1.23) that the region of 

influence of resonances of this type is much smaller than the range of integration in the 

collision terms. That is, the number of neutrons scattered in to an infinitesimal interval de 

at e is not affected by the presence of the resonance. For such resonances the integral 

term P 
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can be simplified by substituting the asymptotic values of S and f(x), that is, P and 1, 

respectively, inside the integral. Thus in the narrow resonance approximation, the integral 

term becomes 

(1.36)  pRNP σ=.  

Because of the low mass of the moderator nuclide, it becomes immediately 

obvious that this approximation will be quite adequate for the moderator collision integral 

term. It has been pointed out by Goldstein [18], Seghal [19] and Ishiguro [14] that, with 

scatters like oxygen, carbon etc, narrow-resonance approximation can lead to an 

overestimation of resonance integrals of the low lying resonances by a few percent when 

m is small. In any case, this approximation is excellent for scattering by hydrogen. 

Introduction of narrow resonance approximation for the moderator collision integral term 

reduces equation (1.23) to 
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It may be useful to point out an important difference between equations (1.23) and 

(1.37). In the process of applying the narrow resonance approximation to be moderator 

collision term, we have made use of the normalization condition on f(x). Therefore, 

equation (1.37) appears as an inhomogeneous equation. On the other hand, equation 

(1.23) is a homogenous equation and in obtaining its solution we have to employ the 

normalization condition on f(x). 

Even though the resonance absorbers of prime interest in reactor physics are 

heavy elements, there are quite a few resonances especially over the higher end of the 

resonance region for which the narrow resonance approximation can be applied [1,2]. 

This arises due to the fact that for higher energy resonances, er(1-α) increases and the 

condition for the applicability of this approximation becomes more and more satisfactory. 

The narrow resonance approximation to the absorber collision integral term also in 

equation (1.37) gives the following expression for f(x): 
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The wide resonance approximation can be considered to be more or less the 

opposite of the narrow resonance approximation. It corresponds to the situation when ΓP 

>> er(1-α). In this situation it can be assumed that over the energy region from which 

neutrons are scattered to an infinitesimal energy interval de at e, the scattering collision 

density is constant. In other words the region of integration in the collision integral is 

much smaller than the region of influence of the resonance. Thus the integrand does not 

vary appreciably and can be taken outside the integral sign. Thus the wide resonance 

approximation to the collision integral provides (with narrow resonance approximation 

for moderator collision integral) 
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and the following expression for f(x) 
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With the above expressions for f(x) the effective resonance integral can be evaluated. 

Substituting for a and s from equations (1.10) and (1.11), the resonance integral in the 

narrow resonance approximation becomes 
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( aJ ,, )βξ is the function defined by Dresner [17] as 
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In the wide resonance approximation, the resonance integral becomes 
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The ( aJ ,, )βξ  function can be evaluated analytically only in the limit of zero 

temperature. We shall give the resulting expressions for the zero temperature resonance 

integrals later on. 

2. Improvements to narrow resonance and wide resonance approximation: 

(a) Improved narrow resonance approximation: 

Spiney [30] and Chernic and Vernon [3] had developed formulae for the 

resonance integrals which are improvements over that provided by equations (1.41) and 

(1.44). Spiney’s improvement was on the narrow resonance approximation. He used the 

fact that if resonance potential interference scattering is neglected and the condition 
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is satisfied, equation (1.37) can be solved exactly. To see this let us rewrite equation 

(1.37) with the explicit form of the cross-sections 
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by defining the quantity  for λ=0, 1 and ∞ by the equation 2
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we can rewrite equation (1.47) as 
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It is seen from the definition of  that when the condition given by equation (1.46) is 
satisfied, = . Hence it is natural to rewrite equation (1.49) as 
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The last term on the RHS of equation (1.50) is considered as a perturbation and neglected 

in obtaining the first order approximation to f(x). Then the first order approximation f1 is 

readily found to be given by 
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It may be noted that f1(x) is same as the expression obtained in the narrow resonance 

approximation. Substituting f1(x) for f(x) on the R.H.S. of equation (1.50) we get a second 

order approximation to f (x). Denoting this by f2(x) we find that 
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Spinney obtained the improved formula for the resonance integral with the above 

approximation to f(x). It is given by [17] 
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(b) Improved wide resonance approximation:



Chernic and Vernon’s improvement was on the wide resonance approximation. 

They considered fWR(x) as the first order approximation to f(x). That is, 
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A second order approximation to f(x) is obtained by substituting it for f(x) on the R.H.S. 

of equation (1.49).  The second order approximation is then found to be 
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Since the above approximation is an improvement over the wide resonance 

approximation, the integrand in the RHS of equation (1.55) may be expanded in a Taylor 

series about x. Neglecting terms beyond third order in the series expansion, it can be 

shown that the resonance integral is given by [17] 
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The integral on the RHS of the above expression can be analytically evaluated 

only in the limit of zero temperature. In this situation one gets [17] 
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It has been found that the improved narrow resonance formula derived by Spinney is 

applicable to more situations than to which the above formula applies. 

3. Intermediate resonance approximation: 

Even though the above discussed approximations are applicable to certain 

resonances, strictly speaking, they are only limiting situations. Further, there are many 

resonances of absorbers for which these approximations are not applicable [2]. Goldstein 

and Cohen [12, 21] developed the intermediate resonance (I.R.) approximation in which 

they assumed that the collision integral term can be considered as a linear combination of 

the approximate forms resulting from the narrow resonance and wide resonance 

approximations. Thus they introduced an interpolation parameter λ with which the 

collision integral term is approximated to be 
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The interpolation parameter λ is to be determined.  It can be seen that the limits λ=1 and 

λ=0, respectively, produce the narrow resonance and wide resonance approximations.   

Substitution of the expressions for PNR and PWR in to the above equation gives 
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Therefore, equation (1.37) gives 
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Goldstein and Cohen also considered an approach in which the intermediate resonance 

approximation for f(x) is taken as a linear combination of fNR and fWR. However, the 

former approach in which the interpolation parameter λ appears in the expression for fIR 

in a non-linear fashion has been found to be superior to the latter [12] 

Substitution of the expression for fIR (x) in the equation (1.32) gives [21] 

(1.61)  ( )
∫
∞

∞− ++
+

= dx
xx

xII
mSa

PmRI
eff σλσσ

ξψλσσ
π

ξ
)()(

),()( 0.  

Introduction of the expressions for σa(x) and σS(x) gives 
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where J and  are respectively given by equations (1.43) and (1.48) and a2
λγ λ is given by 
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In the limit of zero temperature, the J-function can be evaluated analytically and we get 
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The limits λ=1 and λ=0, respectively, give the resonance integral in the narrow resonance 

and wide resonance approximations. Thus, in the zero temperature-limit we get 
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The procedure given by Goldstein [22, 23] to determine the interpolation parameter λ is 

the following. Equation (1.37) may be rewritten as 
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A first order approximation to f(x) is obtained by neglecting the terms in the square 

bracket on the RHS of the above equation. It is seen to be same as fIR given by equation 

(1.60). A second order approximation to f(x) is obtained by substituting fIR for f(x) on the 

RHS of equation (1.69). It is found to be 
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Goldstein obtains an equation for λ by equating the resonance integrals obtained with 

these two successive approximations to f(x). Thus he obtains 
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The integrals in equation (1.71) can be analytically evaluated only in the limit of zero 

temperature. Thus in the zero temperature limit we get 
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When λ is evaluated as the solution of this transcendental equation, the resonance integral 

can be readily obtained from equation (1.64). 



For many resonances of fertile materials of interest, the resonance potential 

interference term in the scattering cross-section can be neglected. This happens because 

of the smallness of Γn in comparison to Γ [24, 25]. In this situation, the transcendental 

equation (1.72) for λ simplifies to 
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The expression for the resonance integral also gets simplified to 
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It can be seen from the transcendental equations (1.72) and (1.73) that the narrow 

resonance and wide resonance limits of λ, viz., 1 and 0, respectively, are obtained in the 

limits ε tending to ∞ and 0. 

It is natural to seek the consequences if the equation for λ is determined by 

equating the resonance integral obtained by the first order approximation and, say, the 

third order approximation. Dyos and Keane [26] have investigated this problem in the 

simplified situation when the resonance potential interference scattering is neglected. 

They have observed that the convergence of the scheme of determining λ by equating 

resonance integral in the first order approximation to that obtained in higher order 

approximations in rather slow when Γn > Γr . 

The major problem in the intermediate resonance approximation has been found 

to be the range of the interpolation parameter when resonance potential interference 

scattering is present [14]. Usually, one expects the actual resonance integral to lie 

between those calculated in the limiting narrow resonance and wide resonance 

approximations. But when resonance potential interference scattering is present, for 

certain situations depending on the value of σm and the relative magnitudes of Γn and Γr 

this does not happen. The actual resonance integral goes outside the limits given by the 

narrow resonance and wide resonance approximations. Consequently, the interpolations 

parameter goes outside its expected range between 0 to 1 [14]. Therefore, Goldstein’s 

procedure becomes an extrapolation rather than an interpolation. Further, the 

transcendental equation (1.72) for determining λ is somewhat complicated and gives rise 



to more than one solution on the real axis and sometimes just one solution. The 

changeover from interpolation to extrapolation and the difficulty in determining the roots 

of the transcendental equation have been discussed in detail by Mikkelson [27]. 

The generalization of Goldstein’s method of determining λ to include temperature 

dependence of resonance cross-sections is not straightforward. Because of the 

complicated form of the cross-sections, one is not able to get an equation for λ as in the 

case of zero temperature. However, with certain approximations, Goldstein [21, 28] 

evaluates the integrals in equation (1.71) and provides an equation for λ in terms of the 

tabulated functions like J(ξ,β,a). He has shown that the resulting equation for λ 

reproduces the equation (1.72) in the zero temperature limit. But the possibility of solving 

this general transcendental equation for all situations has not been clearly shown. Many 

authors have investigated the possibility of using the interpolation parameter λ 

determined from zero temperature calculations directly in the temperature dependent 

resonance integrals [29,27,14]. That is, if λ is evaluated from the transcendental equation 

(1.73), the temperature dependent resonance integral is given by 
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Of course, if resonance potential interference scattering is included and λ is obtained 

from equation (1.72), the expression for the resonance integral given by equation (1.62) 

will have to be used. 

It was observed by Goldstein [15] that if resonance potential interference 

scattering is neglected, the first order approximation to f(x) becomes symmetric about the 

origin. It can be readily seen from equation (1.49) that f(x) is a symmetric function only 

when = . However, the second and higher order approximations show the expected 

behavior of f(x) [15,30]. Pomeraning and Dyos [31] tried to remove the symmetric nature 

of the first order approximation by introducing one more interpolation parameter. They 

have shown that this improves the accuracy of the intermediate resonance approximation. 

2
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Goldstein [18], Seghal [19] and Ishiguro [14] have generalized the intermediate 

resonance approximation to remove the narrow resonance approximation for the 

moderator collision integral by introducing two interpolation parameters. 

We feel that when generalizations are attempted the intermediate resonance 

approximation is not free from difficulties. Nevertheless, the intermediate resonance 

approximation is an important step in the development of techniques of solution to the 

resonance absorption problems. 

F: Other Methods Of Solving The Slowing Down Equation:

In the previous section we considered some of the methods which are specifically 

aimed at evaluating the resonance integral.  In this section we shall briefly outline some 

of the general attempts in solving the slowing down equation. 

1. Weinberg and Wigner – Corngold equation:

An altogether different approach to the solution of the slowing down equation was 

given by Weinberg and Wigner [32]. They considered neutron absorption as a negative 

source and reformulated the slowing down equation using the solution in the non-

absorbing situation as a Green’s function. Equation (1.16) with a mono-energetic source 

emitting neutrons of energy e* may be rewritten as 
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Now let us denote by g(e,e*) the solution of equation (1.77) in the situation when the 

absorption cross-section is zero. The solution g(e,e*) is also known as Placzek funcftion 

[2,33]. The principle of superposition of the solutions of linear equations may be 

employed to reformulate equation (1.77) as  
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An important point to be noticed in this formulation is that the above integral equation for 

 is of the Volterra type. However, it is very complicated because its kernel is the 

Placzek function having discontinuities in all orders of derivatives [2]. Therefore, it is 

necessary to resort to approximation techniques for its solution. It has been pointed out 

that it is quite suitable for obtaining solutions by iteration [2,33]. Proceeding on these 

( )eΦ



lines, Weinberg and Wigner obtained a correction factor in the expression for the 

resonance escape probability given by the narrow resonance approximation. 

Subsequently, using Laplace transforms, Corngold [34] gave a rigorous and more 

general formulation of the problem in terms of Green’s functions. Then he set up a 

variational principle for the resonance escape probability in terms of the neutron flux and 

its adjoint function and showed that quite accurate estimates of this parameter could be 

obtained with simple trial functions. Further, using this variational approach he estimated 

the effects of the assumption of asymptotic flux recovery between neighboring 

resonances of the absorber [35]. To employ analytical treatment of this problem, 

Corngold used only representative forms of the resonance cross-sections such as 

rectangular shapes in the lethargy space and hence the conclusions drawn are only of a 

general nature. 

2. Synthetic kernel approach to the solution of the slowing down equation: 

There had been a continuing attempt in developing approximate forms of the 

kernel of the slowing down equation so as to get analytical solutions. Three well known 

approximate kernels, also known as synthetic kernels, are due to Fermi [36,2], Wigner 

[2,32] and Goertzel and Greuling [37]. The synthetic kernels reduce the slowing down 

dequation to Volterra equations whose solutions can be analytically obtained. These 

kernels are derived under the approximation that the collision density is a slowly varying 

function of lethargy variable and they contain the first two moments of the slowing down 

kernel as parameters. This approach to the solution of the slowing down equation has 

been improved by Stacey [39] by redefining the parameters of the approximate kernel. 

The main aim is to enlarge the applicability of the theory to situations having at lease 

weak resonances in cross-sections. The improvement by Yamamura et al [39,40] to 

include higher moments of the slowing down kernel has been found to destroy the basic 

analytical nature of the method. However, it has provided very fast algorithms for the 

computation of fast reactor spectra. Recently, Yamamura et al [41, 42] have developed a 

scheme in which the parameters of the synthetic kernel are themselves functions of the 

solution of the equation and to be obtained in an iterative manner.  The present status of 

the synthetic kernel approach is that in the simplest form it can not be applied to the 

resonance absorption problem while the sophisticated versions though accurate require a 



good amount of numerical work. The extension of this formalism to include anisotropic 

scattering in the centre of mass system, inelastic mode of energy degradation, time 

dependence, etc. have also been attempted. These are summarized by Stacey in a recent 

review article [43]. 

G: Summary of the Present Work: 

The work presented in this thesis represents a new attempt to solve the slowing 

down equation when the resonance cross-sections can be represented by the single level 

Breit-Wigner formulae. The idea we have exploited is that the discontinuous nature of the 

kernel of the slowing down equation can be removed by going over to the Fourier 

transform space. It may be appropriate to remark here that similar approach was used for 

solving the neutron transport equation in finite systems in single as well as multi-

dimensional situations [44, 45]. Our method uses the fact that the Fourier transforms of ψ 

and χ functions have very simple analytical forms and thus circumvents the difficulties 

arising from the non-availability of the analytical expressions for the temperature 

dependent resonance cross-sections. Further, the method is specifically aimed at 

obtaining the integral parameter of interest, viz. the resonance integral, directly rather 

than first obtaining the neutron flux distribution in the resonance and then calculating this 

parameter. This is achieved by carefully defining the unknown function in the transform 

variable. 

Chapter-II is devoted to the development of the most important ideas of the 

present work. In order to simplify the treatment we introduce two assumptions, viz. that 

the resonance potential interference scattering can be neglected and that the moderator 

collision integral can be treated in the narrow resonance approximation. Thus we treat 

equation (1.47). Introducing the Fourier representation of the discontinuity factor we 

convert equation (1.47) to a Fredholm integral equation of second kind with a continuous 

kernel over the interval (-∞,∞) [46]. In this process, the unknown function θ(k,ξ) in the 

transform variable k is defined such that its value at the origin (k=0) is directly 

proportional to the resonance integral. 

Thereafter the main task is to solve this integral equation and obtain the resonance 

integral. However, a simplification arises in the limit of zero temperature. It is shown that 

in this limit, the kernel of the integral equation becomes a Green’s function of a second 



order differential operator and therefore the equation for θ(k,∞) can be reduced to a 

second order differential equation [46, 47]. The narrow resonance, wide resonance and 

intermediate resonance approximations are shown to correspond to approximating a 

function g(k,ε) depending on the resonance parameters by various constant values. Next 

we develop a WKB solution to the differential equation and obtain a new expression for 

the resonance integral [47]. This formula is applied to some of the typical resonances of 

U238 nucleus in a homogenous mixture with hydrogen. The numerical values of the 

resonance integral are compared with those obtained by other methods. 

Subsequently we concentrate on the temperature dependent problem [46]. Here it 

is found that the kernel of the integral equation contains a factor exp (-k2/ξ 2). Therefore 

the equation can be solved by employing the Gauss-Hermite quadrature formulae except 

for large values of ξ which correspond to low temperatures. So the zero temperature part 

of the solution is separated and the temperature dependent correction alone is obtained 

with the use of the quadrature formulae. 

Earlier we have seen that in the classical approximations, viz., the narrow 

resonance,  wide resonance and intermediate resonance approximations, the temperature 

dependent resonance integral is proportional to the resonance integral function J(ξ,β). 

Therefore, our method of solving the integral equation of slowing down theory gives a 

procedure to evaluate this function when we make suitable approximations in the 

equations [46]. By comparing the J(ξ,β) function calculated by this method with the 

numerical computations over a wide range of ξ and β values, we obtain a fairly good 

estimate of the accuracy of this method. Finally, the method is applied for evaluating the 

Doppler coefficients of some of the resonances of U238 nucleus in a homogeneous 

mixture with hydrogen. These results are compared with those obtained by the 

intermediate resonance approximation and Monte Carlo calculations. 

In Chapter III, the method is generalized to include resonances potential 

interference scattering [48]. Thus we treat equation (1.37) when σa and σs are given by 

equations (1.10) and (1.11). For the temperature dependent problem it is shown that an 

integral equation for a function related to θ(k,ξ) can be obtained. Again we consider the 

integral equation in the zero temperature-limit and obtain a second order differential 

equation for θ(k,∞). Applying the WKB method to obtain the solution, a new expression 



for the resonance integral including the resonance potential interference scattering effects 

is derived. We then analyze the intermediate resonance approximation through the 

solution of this differential equation. Introducing two interpolation parameters a set of 

two coupled transcendental equations are obtained. These equations are derived by 

equating θ(k,∞) and its derivative at k=0 obtained in two successive orders of 

approximation. It is found that these equations are easier to solve numerically compared 

to Goldstein’s equation and yield fairly accurate values for the resonance integral. This 

discussion is concluded with a comparison of the numerical values of zero temperature 

resonance integrals of U238 nucleus. 

Because of the nature of certain terms present due to the inclusion of resonance 

potential interference scattering, we notice that it is not appropriate to employ the Gauss-

Hermite quadrature formulae for the solution of the general integral equation.  Therefore, 

we examine the approach wherein the solution is expanded in terms of a set of 

polynomials related to Hermite polynomials. It is shown that the matrix elements of the 

resulting system of equation determining the expansion coefficients can be evaluated 

using suitable recurrence relations. 

So far we were working under the assumption that the resonances are sufficiently 

separated in energy and used the unperturbed neutron flux distribution viz. the ‘1/e’ 

distribution above the resonance. When the resonances of the absorber are closely spaced, 

the presence of one resonance perturbs the flux distribution in the other resonance. This 

interaction between the resonances leads to a reduction in the overall resonance 

absorption and modifies the Doppler broadening effect considerably. The effect of 

interaction is of second order in magnitude and obtaining it even from a direct numerical 

solution of the slowing down equation would be difficult. This is because the Doppler 

broadened functions are also to be computed numerically. 

In Chapter-IV, we generalize the Fourier transform method for an estimation of 

these effects [50]. In the energy region of interfering resonances, the scattering and 

absorption cross-sections of the absorber are given by superposition of the cross-sections 

for individual resonances. For the case of two interacting resonances, the problem of 

obtaining the resonance integral (including the interaction effect) is reduced to the 

solution of a Fredholm integral equation. In the zero temperature-limit, the equations in 



the transform variable are shown to reduce to two coupled second order differential 

equations. A method of solving these equations is developed in the WKB approximation 

and applied to the two interfering low-energy resonances of Th232 [50]. Thereafter we 

consider the temperature dependent problem. It is well known that in the narrow 

resonance approximation the resonance integral including the interaction effect is 

proportional to be generalized J-function [51]. We make suitable approximations in the 

integral equation so that its solution at k=0 is proportional to this function. Employing the 

Gauss-Hermite quadrature formulae to obtain the solution of the resulting integral 

equation, we calculate the Doppler coefficients of Th232 resonances. It is seen that the 

interaction between the resonances leads to destructive interference and consequent 

reduction in Doppler coefficient for low temperature. 

In Chapter-V we develop the Fourier transform method relaxing the assumption 

of narrow resonance approximation for the moderator collision-integral. There is an 

important difference between equation (1.23) to be treated in this situation and those 

encountered in earlier chapters. Equation (11.23) is a homogenous equation in f(x) and is 

to be solved with the normalization condition that f(x) goes to unity when x→∞. In the 

equations treated earlier, together with the narrow resonance approximation for 

moderator collision integral, this normalization condition had been employed and 

therefore they appeared as inhomogeneous equations. In converting the initial value 

problem posed by equation (1.23) together with the normalization condition to an integral 

equation in the Fourier transform space, we find it necessary to introduce elementary 

ideas from the theory of distributions [52]. The situation encountered is similar to that 

occurring in Case’s method of solving the neutron transport equation in plane geometry 

[53]. In later part of this Chapter we consider the integral equation in the limiting 

situation of zero temperature and show that a second order differential equation can be 

obtained. 

In conclusion, it may be said that we have given a new formulation of the problem 

of resonance absorption in reactor physics. Using Fourier transforms, we convert the 

slowing down equation with resonance cross-sections to Fredholm integral equations of 

second kind. The equations reduce to second order differential equations in the limit of 

zero temperature. The important feature of our method has been the reduction of the 



slowing down integral equation with discontinuous kernel to equations of the type well 

studied in mathematical physics. The methods attempted to solving the equations in the 

transformed space do indicate the applicability of this approach to the evaluation of 

resonance integrals accurately. 
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CHAPTER-II 

FOURIER TRANSFORM METHOD FOR EVALUATING 
 

RESONANCE INTEGRALS – PART I 
 

In this Chapter we shall develop some of the salient features of the Fourier 

transform method for evaluating resonance integrals. For the sake of simplicity it will 

be assumed that the resonance potential interference scattering can be neglected and 

that the moderator collision integral can be treated in the narrow resonance 

approximation. 

A: Derivation of the Freedom Integral Equation: 

We shall proceed with the temperature dependent cross-sections and show that 

the slowing down equation can be transformed to a Fredholm integral equation [46]. 

Introducing the constant A defined as 

(2.1)  
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σ
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=  

equation (1.49) can be rewritten as 
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Our aim is to obtain the resonance integral defined din terms of f(x) in equation 

(1.32). As have been already emphasized, one of the difficulties in dealing with the 

above integral equation is the doubly discontinuous nature of its kernel. To remove this 

we introduce the discontinuity factor, 

(2.3)  xyyxH <= ,0),,( ε  
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Using H(x,y,ε ), equation (2.2) can be  written as 
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where δ(y-z) is the usual Dirac delta function. Using the Fourier integral representation 

of the delta function [52] we get 
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The fact that this is indeed a representation of the discontinuity factor can be seen by 

considering it as a contour integral. Substituting for H(x,y,ε) in equation (2.4) we get 
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Defining the Fourier transforms 
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equation (2,7) can be rewritten as 
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Fourier transformation of this equation gives 
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In obtaining this relation between F(k) and θ(k,ξ) we have used the Fourier integral 

representation of the delta function. The above equation can be rewritten as 
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It is now appropriate to look closely into the definition of the transforms F(k) and 

θ(k,ξ). We have seen that f(x) goes to unity as x → ±∞. Therefore its Fourier transform 

F(k) will contain a delta function as has been obtained in equation (2.12). 

The transform θ(k,ξ) is of particular interest because at k=0 it is proportional to 

the resonance integral. Equation (1.32) shows that  

(2.13)  ),0(2)( 0 ξθξ IIeff =  
Thus it is natural to convert the relation (2.12) between F(k) and θ(k,ξ) into an equation 

in θ(k,ξ). Thereafter the resonance integral can be obtained directly from its solution. 

To eliminate F(k) from equation (2.12) we need one more independent relation between 

F(k) and θ(k,ξ). If we denote by ),( ξψ k  the Fourier transform of the ψ function, the 

application of the convolution [52] theorem to equation (2.8) gives 
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Changing the variable to k’ in equation (2.12), multiplying by ),'( ξψ kk −  and 

integrating over k’ we get 
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To complete the derivation of the integral equation we have to evaluate the 

function ),( ξψ k . The ψ function was defined as a convolution integral in equation 

(1.12). Therefore its transform can be obtained with the use of the converse of the 

convolution theorem [51,52].
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Here (1/2) )exp( k−  and )exp( 22 ξk−  are respectively the Fourier transforms of the 
Lorentzian and Gaussian functions. Substituting for ),'( ξψ kk −  in equation (2.15) we 
find 
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The function g(k,ε) is defined as 
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Thus the problem of solving the slowing down equation and evaluating the resonance 

integral (including its temperature dependence) has been reduced to the solution of the 

integral equation (2.17). It is a Fredholm integral equation of second kind with a 

continuous kernel over the interval (-∞,∞). It may be remarked that in the present 

method we have circumvented the difficulties arising from the non-availability of 

analytical expressions for the Doppler broadened functions. The fact that the ψ function 

has a simple analytical expression in the Fourier transform space has been exploited in 

our approach. 

The flux distribution in the resonance, if required, can be obtained from the 

inverse transform: 
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Before discussing the integral equation (2.17) further, we shall analyze the 

limiting zero temperature situation. 

B. Resonance Integrals in the Zero Temperature Limit:

In Chapter-I we have seen that most of the analytical work on resonance 

absorption problems is limited to the zero temperature situation. This becomes possible 

due to the Lorentzian form of the Breit-Wigner cross-section. In the present method the 

integral equation gets simplified and a good amount of work can be carried out 

analytically. 

(i) Derivation of a differential equation for θ

When the temperature of the medium goes to zero, the parameter ξ→∞. 

Therefore, equation (2.17) becomes 

(2.20)  ( ) ( )kdkkkgkkk −=∞−−+∞ ∫
∞

∞−

exp
2
1'),'(),'('exp

2
1),( θεθ  

Since the kernel of this integral equation happens to be the Green’s function of a 

differential operator it can be reduced to a differential equation. That is [54], 
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Applying this operator on equation (2.20) we get 
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This may be rewritten as [46,47] 
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Since the integral equation has been converted into a differential equation we have to 

provide the boundary conditions on θ(k,∞). They are provided by putting k=±∞ in 

equation (2.20), 

(2.24)  ±∞==∞ kk ,0),(θ  
Thus the problem of evaluating the zero temperature resonance integral has been 

reduced to the solution of a differential equation. Earlier, Spinrad, Chernic and 

Corngold [55] had barely outlined the possibility of deriving such a differential 

equation. But at the time of developing the method published in reference [47] we were 

completely unaware of the aforesaid work. 



The delta function ion the R.H.S. of equation (2.23) shows that dθ/dk is 

discontinuous at k=0. The discontinuity can be obtained by integrating the equation 

near the origin: 
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Thus the problem reduces to the solution of the homogenous differential equation 
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in the open interval (0,∞) and (-∞,0) satisfying the boundary condition 
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From the definition of θ(k,∞), we know that it is continuous at k=0, that is, 
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Before attempting the general solution, we shall consider some limiting situations [47] 

(ii) Solutions of the differential equation in certain limiting situations: 

While discussing the intermediate resonance approximation we pointed out that 

the narrow resonance and wide resonance approximation can be obtained in the limits 

ε→∞ and ε→0. As ε→∞, the function ν(k,ε) →0. Thus we get 
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which yield 
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The resonance integral in the narrow resonance approximation becomes 

(2.37)  
1

0
.0

. ),0(2)(
β

θ III RN
RN

eff =∞=∞  

and is found to be same as that given in equation (1.74). 

As ε→0, the function ν(k,ε) →1 and we get 
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This is same as the quantity  according to the definition of  given in equation 
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which is again the expression obtained earlier. Further the function g(k,ε) can be 

rewritten as 
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thus when , we again obtain the narrow resonance limit. Earlier we have seen 

that this is same as the condition 

22
1 ∞= γγ

)( mPPn σσσ +=ΓΓ  observed by Spinney [20].  

The intermediate resonance approximation corresponds to the approximation  
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where =1+ . The constant  or 2
λβ

2
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2
λγ λβ  is as yet unspecified. The procedure given by 

Goldstein can be used to derive a transcendental equation for λβ . Details of this 

derivation will be given in the next Chapter where we shall consider the general 

problem including resonance potential interference scattering. 

(iii) WKB approximation for θ(k,∞) 

Equation (2.26) being a second order differential equation with a variable 

coefficient can not be integrated exactly. One of the powerful methods for treating this 

equation is the WKB method [56]. We shall derive a new expression for Ieff by 

obtaining a WKB approximation to θ(k,∞). Using equation (2.42), equation (2.26) can 

be written as 
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It is seen that the coefficient of θ(k,∞) in the last term goes to zero as k → ±∞. 

Therefore the asymptotic form of θ(k,∞) is same as θN.R(k,∞). To include this fact, we 

attempt a solution 
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The discontinuity condition (2.29) gives 
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Substituting in equation (2.47), we obtain 
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Thus θ(k,∞) has been expressed in terms of . The resonance integral becomes )(kS ±
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We now substitute from equations (2.53) in the differential equation (2.46) and get 
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The upper sign stands for k>0 and the lower sign for k<0. Since the above equations 

are nonlinear equations of the Ricatti type they can not be integrated exactly. We shall 

obtain their solutions by a perturbation expansion. The first order approximation is 

obtained by neglecting the quadratic terms in the equations. Integrating the resulting 

equation and using the boundary condition (2.49), we find 
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These solutions will be sufficiently accurate when |S(k)|<<2β1  The  second order 

approximation is obtained by substituting  in the  quadratic terms in equations 

(2.55).  Integrating the resulting equations we get 
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Even though this process can be obtained, we shall restrict our further discussions up to 

the second order approximation. We find that the real and imaginary parts of 

( )νν AA −1   are respectively even and odd functions. Therefore,  and , 

the real and imaginary parts of  (n=1,2) will also have the property 
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Substituting for  in equation (2.57) and performing one integration by parts in the 

second integral, we get 
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The integrals in this equation can not be evaluated analytically. However, we find that 

the integrands can be expanded in a convergent power series in A. By definition A is 

less than unity and so also is the magnitude   of the term ν(k,ε). Therefore we write 
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Substitution into equation (2.61) gives 
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where c=ε/2β1 and 
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On commuting the resonance integrals we have found that it is adequate to keep terms 
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Here RIn and IIn respectively denote the real and imaginary parts of In(c). Similarly, 

RVnm stands for the real part of Vnm. The required integrals to obtain  have been 

evaluated in Appendix-I 

)0(2
+
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The expression for θ(k,∞) in the second order approximation is given by 

equations (2.53) and (2.57).  can not be evaluated analytically for non-zero 

values of k and obtaining θ(k,∞) from these equations would involve lot of numerical 

work. However, an expression which coincides with this function at k=0 and hence 

reproduces the resonance integrals is 

)(2 kS ±

(2.66)  )exp(
2

1),( kk eff
eff

WKB β
β

θ −≅∞  

It can be seen from the previous sub-section that this form of θ(k,∞) is very much 

similar to that obtained in the intermediate resonance approximation. In fact it 

corresponds to replacing g(k,ε) by 

(2.67)   1),( 2 −≅ effkg βε

(iv) Comparison of various methods: 

Here we shall establish the accuracy of the above derived expressions for the 

resonance integral by numerical comparison. In this section we shall also include 

results obtained from the other formulae derived in Chapter-I. We choose the first ten 

low energy resonances of U238 nucleus. The resonance parameters used in all 

calculations are given in Appendix-II. Tables-I and II respectively give the zero 



temperature resonance integrals in a homogeneous mixture of  and hydrogen when the 

nuclear concentrations are such that Nu:Nh = 1 and 5. 

The last column in the tables gives resonance integrals obtained through a 

numerical solution of equation (2.2). The numerical scheme is the same as that 

employed by Horner and Keane [57,58]. The integral appearing on the RHS of equation 

(2.2) is approximated by Simpson’s formula. This enables one to evaluate f(x) at 

equidistant points through a recursion formula if it is assumed to be known for very 

large values of x. In obtaining the results we assumed that f(x) =1 for x > 1000. Once 

f(x) is known at many equidistant points, they can be used to evaluate the resonance 

integral numerically. 

The resonances chosen are typical in the sense that the first three are usually 

categorized as wide resonances where as the last two are said to be narrow resonances. 

The resonances at energies 102 and 192 eV ae usually labeled as intermediate 

resonances because the resonance integrals calculated in the narrow resonance  and 

wide resonance approximations differ considerably. 

From this table it is seen that the improvements on narrow resonance and wide 

resonance approximations introduced by Spiney and Chernic and Vernon are good only 

for those resonance belonging to the respective classes. For the resonance belonging to 

the intermediate class, the narrow resonance and wide resonance approximations give 

results which differ approximately by a factor of 2. The intermediate resonance 

approximation of Goldstein gives good results for all the resonance. The analytical 

expression for the resonance integral obtained by the WKB method is found to give 

accurate results. It is found to be applicable to resonance belonging to narrow, wide and 

intermediate classes. Thus we have been able to bridge the gap between the limiting 

narrow resonance and wide resonance approximations through this analytical 

expression. 

C. Temperature Dependent Resonance Integrals:

In this section we shall give a method for solving the integral equation (2.17). 

(i) Solution of the integral equation for θ(k,ξ)  

The kernel of the integral equation for θ(k,ξ) contains a factor exp[- k2 /ξ 2] and 

it suggests the use of Gauss-Hermite quadrature formulae for approximating the 

integral terms [61]. The quadrature formula may be written as 
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where kj are the roots of the Hermite polynomials of order N and Wj are the 

corresponding weights [60]. The above equation is exact if f(k) is any arbitrary 

polynomial of degree 2N-1. For other functions it gives an approximation to the integral 

in the sense of approximating f(k) to a polynomial degree 2N-1 [60]. 

We notice that in the zero temperature limit ξ→∞ and the quadrature formulae 

can not be employed at all. Therefore we separate the zero temperature part of the 

solution and write [62]. 
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The quadrature formula will be used to determine ),( ξϕ k  alone. Thus for small values 

of ξ which corresponds to higher temperatures the quadrature formula gives a good 

approximation to ),( ξϕ k . When ξ large ),( ξϕ k  is quite small and contributes very 

little to the resonance integral although the method of evaluating it may be inaccurate. 

Using (2.69) in equation (2.17) we get 
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The WKB solution for θ(k,∞) obtained in the previous section is somewhat complicated 

and its calculation for values of k≠0 would involve a lot numerical work. Therefore in 

evaluating S(k), we use the approximate form for θWKB(k,∞) given by equation (2.66). 

That is, 
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Now we define the transformation 
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and rewrite equation (2.70) as 
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Equations (2.69) and (2.73) show that the resonance integral is given by 
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The integral term on the R.H.S. of equation (2.74) is now approximated as 
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where =*ξ 2ξ . However, for better accuracy we introduce a convergence parameter 

ω and rewrite the above equation as 
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where ξ = ωξ . The choice of parameter ω will be given in the next sub-section. Using 

(2.77) the integral equation (2.74) becomes 
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Putting k=ξ ki,for 1≤i≤ N, we get N algebraic equations for the unknown ),( ξξ ikΦ  

which can be written in matrix notation 
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The elements of the square matrix B and the vectors Φ
r

 and S
r

 are given by 

(2.78)  [ ]jijjij
i

ji
ji kkkkkW

g
B )/2()2(exp

2
2222 ωωωξξδ

+−−−−+=  



  NjNikSSk iiii ≤≤≤≤=Φ=Φ 1,1,)(,)( ξξ  

To obtain Si the integral appearing in equation (2.72) is to be evaluated numerically. It 

has been found that Simpson’s rule evaluation, to an accuracy of 10-4, is quite fast. 

It is seen from equation (2.75) that to obtain the resonance integral it is 

sufficient to know ),0( ξΦ . Therefore we choose the order of the qadrature formula to 

be an odd number so that one of its roots, say, k1 is zero. Thus, when Φ1 is evaluated it 

gives the resonance integral directly. 

Since g(k, ε) is a complex valued function, the unknown function ),( ξkΦ  also 

is a complex function. Therefore the system of equations (2.79) is equivalent to 2N real 

equations. It is our aim to show that these equations can be reduced to (N+1)/2 real 

equations. 

The roots of the Hermite polynomials occur in conjugate pairs, that is, the roots 

to be used in an odd order quadrature formula can be arranged as 

2/)1(4322/)1(432 .....................0 ++ −−−− NN kkkkkkkk  

We separate the real and imaginary parts of the square matrix B and the vectors  and Φ
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 by writing them as 
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Substituting in equation (2.79), we get 
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From the definition we know that the real and imaginary parts of g(k, ε) are 

respectively even and odd functions. Therefore, the integral equation (2.74) shows that 

the real and imaginary parts of ),( ξkΦ  are also even and odd functions. Thus with the 

ordering of the roots as indicated earlier, we have 
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Exactly similar relations hold between the elements of the source vector S
r

.  The matrix 

elements Bij have the property 

(2.84)   R
Ni

R
i 2/)1(,1,1 −+= BB

   R
Ni

R
i 1,2/)1(1, −+= BB

   R
Ni

R
i 1,2/)1(1, −+= BB

   R
jNi

R
Nji ,2/)1(2/)1(, −+−+ = BB

   R
NjNi

R
ji 2/)1(,2/)1(, −+−+= BB

2/)1(2,2/)1(2 +≤≤+≤≤ NiNi  

The matrix BI is diagonal with the property that 
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where  and R
rB
r R

cB
r

, , , RΦ
r

IΦ
r RS

r
, IS
r

are, respectively, (N-1)/2 dimensional row and 

column vectors and ,  and IRB1
RB2

IB1  are square matrices of order (N-1)/2. Expanding 

the above equations we get 
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1B  being a diagonal matrix, it’s inverse can be obtained very easily. Therefore we can 

solve for  from the second of the above equations: IΦ
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Substituting in the third of equation (2.87) we get the following (N+1)/2 real equations 
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R
1Φ  can be obtained from these equations using Cramer’s rule. Thus the effort involved 

in obtaining the resonance integral by this method is the evaluation of two determinates 

of order (N-1)/2. It may be noted that this reduction in the order of the determinants has 

been possible because the matrix  is diagonal. The transformation defined by 

equation (2.73) was introduced to accomplish this reduction in numerical work. 

I
1B

To estimate the accuracy of this method we shall apply it to the evaluation of 

resonance integral in the intermediate resonance approximation (narrow resonance and 

wide resonance approximations are included). In Chapter-I it was shown that  is 

proportional to the J(ξ,β) function. The following sub-section essentially gives a 

method for evaluating this function [46]. By comparing the J(ξ,β) function calculated 

by this method with the tabulations of Adler and Nordheim [62] we shall obtain a good 

estimate of the accuracy of this method. 

)(ξIR
effI

(ii) Evaluation of the J(ξ,β) function

In the intermediate resonance approximation g(k,ε) is replaced by a constant  

and equation (2.17) becomes 
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Since the kernel of this integral equation is of the displacement type its solution can be 

obtained by Fourier transformation [54]. Let F(x,ξ) be defined as 
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Taking the inverse transform of equation (2.90) we get 

(2.92)  
),(1

),(),( 2 ξψγ
ξψξ

λ x
xxF

+
=  

Therefore ),( ξθ kIR  becomes 



(2.93)  ∫
∞

∞−

= dxxFxikkIR ),()exp(
2
1),( ξ
π

ξθ  

∫
∞

∞− +
= dx

x
xxik

),(1
),()exp(

2
1

2 ξψγ
ξψ

π λ

 

From the definition of the J-function given in equation (1.76) we find that 
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),( ξθ kIR  can not be analytically evaluated from equation (2.93). Our aim is to obtain 

),0( ξθIR  from the integral equation (2.90) using the quadrature formula. Separating the 

zero temperature part of the solution we write [61] 
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Substituting for ),( ξθ kIR  in equation (2.90) we get 
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Substituting for ),( ∞kIRθ  from equation (2.44) we get 
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Applying the quadrature formula, equation (2.96) can be reduced to the system of 

algebraic equations 
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Here also we choose and odd order quadrature formula so that 1),0( XIR =ξϕ . The 

integral equation (2.96) shows that ),( ξϕ kIR  is an even function of k. Using this fact 

and arranging the roots of the quadrature formula as indicated in the previous sub-

section the matrix equation (2.100) can be partitioned and the algebraic system can be 

reduced to (N+1)/2 equations. For k=ki ≥ 0, the integral appearing in the expression for 

S(k) can be written as 

(2.102)  [ ] '''2'2'exp 222 dkkkkkkk ii∫
∞

∞−

−+−−− λβξξ  

  [ ] '''2'2)'(exp
0

222 dkkkkkkk ii∫
∞

−−−+−= λβξξ  

  [ ] '''2'2)'(exp
0

222 dkkkkkkk
ik

ii∫ −+−−−+ λβξξ  

  [ ] '''2'2)'(exp 222 dkkkkkkk
ik

ii∫
∞

−+−−−− λβξξ  

It is clear that Si can be expressed in terms of error functions. However, a direct 

Simpson’s rule evaluation of these integrals, to an accuracy of 10-4, was also found to 

be equally fast. 

In order to determine the accuracy of this method, we evaluated the J-function 

for a range of ξ and β values and compared them with the tabulations of Adler and 

Nordheim [62]. Without the introduction of the convergence parameter ω, that is, with 

the equations obtained by putting ω2 =2, and a 19th order quadrature, the J-functions 

calculated were accurate to about 0.6%; see table-III. With several sets of numerical 

calculations, it was found that by varying the parameter ω as a function of ξ according 

to the empirical relation 

(2.103)  ω = 2.2 + 2 ξ  

the accuracy can be improved to about 0.15%; see table-IV. 

It should be pointed out that the effort involved in this method of obtaining the 

J-function is the evaluation of two determinants of order nine. A direct numerical 

evaluation of this function is very time consuming [62,63]. This has given rise to 



several approximate methods of evaluation [63]. The method given here is quite fast 

and accurate and is a bri-product of our method of solving the integral equation of 

slowing down theory. 

(iii) Doppler coefficients of U-238 resonances

We shall apply the method outlined in sub-section (i) to calculate the 

temperature dependent resonance integrals and Doppler coefficients of the first few 

resonances of U238 in a mixture of U238 and hydrogen. Tables-V and VI give the results 

when the nuclear concentrations are such that Nu:Nu=1 and 5. For the sake of 

comparison we also give the results obtained by the intermediate resonance 

approximation. In obtaining the temperature dependent interpolation parameter, the 

transcendental equation given by Goldstein [21] 
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was solved using as iterative procedure. The J-functions appearing in this equation 

were evaluated by the method given earlier. 

Table-V shows that the Doppler coefficients calculated by the present method 

compare well with those obtained by the intermediate resonance approximation. 

However, some differences are found for the resonances at energies 6.68, 36.8 and 192 

eV. The zero temperature resonance integrals obtained by the intermediate resonance 

approximation are overestimates for the resonances at 36.8 and 192 eV and hence their 

Dopper coefficients are found to be lower than that obtained by the present method. In 

view of the assumption of the intermediate resonance approximation, we feel that our 

results for the resonance at 192 eV are more accurate. Table-VI shows that the Doppler 

coefficients calculated by the present method are within the statistical uncertainty of 

Monte Carlo calculations [19] except for the resonance at energy 6.68 eV. The reason is 

that in our calculations the moderator collision integral is treated in the narrow 

resonance approximation where as in Monte Carlo calculations it is treated explicitly. 

Further, it is seen that there is good agreement between the results of intermediate 

resonance approximation and the present method for larger values of σm. 

It may be worth pointing out one important difference in our method of 

calculating the Doppler coefficients. Since the change in the resonance integral due to 



an increase of temperature is rather small, round off errors get introduced in the 

Doppler coefficient when it is obtained from two independent calculations. In our 

method, the major contribution coming from the zero temperature part appear explicitly 

and therefore differences of large numbers do not occur in Doppler coefficient 

computations. 

D. Summary  

In this Chapter, using Fourier transforms we converted the slowing down 

equation to a Fredholm integral equation of second kind. In the zero temperature limit, 

it was shown that the integral equation can be reduced to a second order differential 

equation. The classical approximations, viz., the narrow resonance, wide resonance and 

intermediate resonance approximations were found to correspond to approximating the 

function g(k,ε) by various constant values. The differential equation was solved in the 

WKB approximation and thus a new expression for the zero temperature resonance 

integral was obtained. It was found that after separating the zero temperature part of the 

solution, the Fredholm integral equation can be solved with the use of Gauss-Hermite 

quadrature formulae. As a bi-product of this method we obtained an accurate and fast 

method for evaluating the J(ξ,β) function. The method was applied to evaluate 

resonance integrals and Doppler coefficients of some of the resonances of U238. 



Table-I 

Zero Temperature Resonance integrals of U238 Resonances 

 

Resonance Integrals (barns) Resonance 

Energy (eV) NR
effI  WRR

effI  SPR
effI  CV

effI  IR
effI  WKB

effI  Numerical
effI  

6.68 4.795 4.038 - 4.043 4.043 4.062 4.045 

21.0 1.853 1.765 1.536 1.768 1.768 1.772 1.770 

36.8 1.184 1.487 1.989 1.477 1.463 1.438 1.448 

66.3 0.4169 0.4471 0.4429 0.4340 0.4360 0.4350 0.4351 

81.1 0.1289 0.1098 0.1244 0.2842 0.1246 0.1246 0.1246 

102.8 0.2849 0.4464 0.4027 0.4006 0.3745 0.3683 0.3675 

116.8 0.1650 0.1685 0.1661 0.1571 0.1660 0.1660 0.1660 

192.0 0.1209 0.2529 0.1705 0.1730 0.1647 0.1632 0.1622 

209.0 0.0967 0.1454 0.1085 0.0087 0.1079 0.1079 0.1079 

238.0 0.0687 0.0818 0.0707 - 0.0707 0.0707 0.0707 

 

Notes: 

1. Nuclear concentrations are such that Nu:Nh=1:1 

2. Resonance parameters used are given in Appendix-II 

3. Resonance potential interference scattering is neglected. 

 



Table-II 

Zero Temperature Resonance integrals of U238 Resonances 

 

Resonance Integrals (barns) Resonance 

Energy (eV) NR
effI  WRR

effI  SPR
effI  CV

effI  IR
effI  WKB

effI  Numerical
effI  

6.68 9.176 9.012 8.368 9.017 9.017 9.018 9.017 

21.0 3.548 3.940 4.344 3.887 3.883 3.887 3.876 

36.8 2.267 3.317 3.860 3.170 3.065 3.038 3.026 

66.3 0.7974 0.9956 0.8944 0.6268 0.8756 0.8760 0.8754 

81.1 0.2431 0.2411 0.2429 0.3247 0.2429 0.2429 0.2428 

102.8 0.5449 0.9902 0.7334 0.4624 0.6967 0.6982 0.6953 

116.8 0.3147 0.3738 0.3259 - 0.3250 0.3252 0.3250 

192.0 0.2310 0.5531 0.3032 - 0.2939 0.2954 0.2942 

209.0 0.1845 0.3203 0.2037 - 0.2024 0.2028 0.2026 

238.0 0.1310 0.1802 0.1352 - 0.1350 0.1351 0.1350 

 

Notes: 

1. Nuclear concentrations are such that Nu:Nh=1:5 

2. Resonance parameters used are given in Appendix-II 

3. Resonance potential interference scattering is neglected. 

 



Table-III 

Percentage Eror in J(ξ,β) Function Calculations: 

 

k ξ=0.1 ξ=0.2 ξ=0.3 ξ=0.4 ξ=0.5 

4 0.53 0.41 0.24 0.15 0.12 

5 0.48 0.50 0.39 0.29 0.21 

6 0.43 0.55 0.49 0.41 0.33 

7 0.43 0.52 0.56 0.51 0.46 

8 0.27 0.46 0.54 0.56 0.52 

9 0.18 0.39 0.49 0.52 0.50 

10 0.09 0.31 0.35 0.49 0.49 

11 0.01 0.26 0.36 0.36 0.46 

12 0.01 0.14 0.30 0.32 0.36 

13 -0.04 0.12 0.18 0.23 0.28 

 

Notes: 

1. β is given by the relation β=2kx 10-5  

2. Order of the quadrature formula, N=19 

3. Convergence parameter ω2=2 

4. Comparison with tabulations of Adler and Nordheim [63] 

 



Table-IV 

Percentage Eror in J(ξ,β) Function Calculations: 

 

k ξ=0.1 ξ=0.2 ξ=0.3 ξ=0.4 ξ=0.5 

4 0.16 0.16 0.09 0.06 0.07 

5 0.11 0.16 0.13 0.12 0.09 

6 0.09 0.15 0.13 0.12 0.10 

7 0.14 0.13 0.14 0.12 0.12 

8 0.04 0.12 0.13 0.11 0.09 

9 0.01 0.10 0.02 0.10 0.10 

10 -0.03 0.08 0.12 0.11 0.06 

11 -0.07 0.08 0.10 0.03 0.09 

12 -0.05 0.02 0.10 0.06 0.06 

13 -0.07 0.04 0.05 0.05 0.05 

 

Notes: 

5. β is given by the relation β=2k x 10-5  

6. Order of the quadrature formula, N=19 

7. Convergence parameter ω2=2.2+2 x ξ 

8. Comparison with tabulations of Adler and Nordheim [63] 

 



Table-V 

Doppler Coefficients of U238 Resonances 

 

Doppler Coefficients 104 ∆ Ieff /∆T (barns/°K) 

T= 0 - 300°K T= 300 - 600°K T= 600 - 900°K 
Resonance 

Energy (eV) 
IR FTM IR FTM IR FTM 

6.68 1.40 1.02 1.58 1.48 1.57 1.56 

21.0 1.09 1.06 1.17 1.16 1.18 1.17 

36.8 0.656 0.845 0.720 0.778 0.724 0.735 

66.3 1.20 1.20 1.13 1.12 1.04 1.05 

81.1 2.72 2.66 1.33 1.30 0.931 0.898 

102.8 0.459 0.498 0.462 0.461 0.456 0.418 

116.8 1.52 1.53 1.11 1.11 0.897 0.899 

192.0 0.187 0.245 0.189 0.204 0.186 0.159 

209.0 0.447 0.501 0.390 0.401 0.356 0.354 

238.0 0.891 0.928 0.600 0.602 0.471 0.470 

 

Notes: 

1. IR -Intermediate Resonance Approximation 

2. FTM – Fourier Transform Method (present) 

3. Nuclear concentrations are such that Nu:Nh=1:1 

4. Resonance parameters used are given in Appendix-II 

5. Resonance potential interference scattering is neglected. 

 



Table-VI 

Doppler Coefficients of U238 Resonances 

 

Doppler Coefficients 104 ∆ Ieff /∆T (barns/°K) 

T= 0 - 300°K T= 300 - 600°K 
Resonance 

Energy (eV) 
IR MC FTM IR FTM 

6.68 14.42 12.9±0.57 14.44 13.83 13.77 

21.0 10.08 9.7±0.62 10.13 9.28 9.50 

36.8 5.61 5.71±0.64 5.23 5.43 5.30 

66.3 5.81 5.78±0.47 5.96 4.80 5.03 

81.1 7.83 7.8±0.41 7.83 2.64 2.64 

102.8 2.49 2.57±0.33 2.59 2.24 2.18 

116.8 6.27 6.08±0.35 6.35 3.50 3.54 

192.0 0.906 0.93±0.08 1.03 0.812 0.740 

209.0 2.17 2.07±0.20 2.27 1.48 1.48 

238.0 3.00 2.9±0.35 3.06 1.55 1.55 

 

Notes: 

1. IR -Intermediate Resonance Approximation 

2. MC – Monte Carlo Method [Ref.19] 

3. FTM – Fourier Transform Method (present) 

4. Nuclear concentrations are such that Nu:Nh=1:1 

5. Resonance parameters used are taken from Ref.19 

6. Resonance potential interference scattering is neglected. 

 

 



CHAPTER-III 

 

FOURIER TRANSFORM METHOD FOR EVALUATING 

RESONANCE INTEGRALS – PART-II 

 
In this Chapter we shall extent the Fourier transform method to include 

resonance potential interference scattering. This is important whenever the scattering 

width Γn of the resonances becomes comparable to the absorption width Γr [14,24]. In 

Chapter-I we mentioned that in this situation certain problems arise in the intermediate 

resonance approximation. We also pointed out the difficulties encountered in solving 

the transcendental equations of intermediate resonance approximation. 

In the previous Chapter resonance potential interference scattering was 

neglected for the sake of simplicity in presenting the ideas.  However as we shall see 

the main ideas of the Fourier transform method are applicable here though some 

important modifications occur when this generalization is attempted. In the zero 

temperature limit we again get a second order differential equation in the transform 

space, but now it contains a first derivative term. The Fredholm integral equation 

resulting in the temperature dependent case is somewhat different from that obtained in 

the previous Chapter. The kernel of this integral  equation contains the Heavisdie unit 

function and therefore the Gauss-Hermite quadrature formulae is not directly applicable 

for obtaining its solution. But we shall show that Hermite polynomials can be employed 

to obtain the resonance integral from this equation with minimum effort. 

A: Derivation of the Freedom Integral Equation: 

The equation to be treated here is (1.37).  Substituting for the resonance cross-

sections we get 

(3.1)  [ ] )(),(),(1 1
2
1 xfxx ξχηξψγ ++  
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x
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ε
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Introducing the discontinuity factor H(x,y,ε ) this equation can be written as 

(3.2)  [ ] )1()(),(),(1 1
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On Fourier transformation we get 

(3.3)   =++ ),(),()( 1
2
1 ξηξθγ kGkkF

[ ]),(),()(),()()1( 2 ξηξθγενδ kGkkFkAkA ∞∞ +++−=  

F(k), θ(k,ξ) and ),( εν k  have been defined in equations (2.9) (2.8) and (2.6), G(k,ξ) is 

defined as  

(3.4)  dxxxfexG xik ),()(
2
1),( ξχ
π

ξ ∫
∞
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=  

It may be noted that G(k,ξ) is proportional to the rate of scattering collisions 

contributed by the resonance potential interference. 

Equation (3.3) can be rewritten as 
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where ),( εkg  is defined in equation (2.18) and ),( εkh  is given by  

(3.6)  
),(1

),(),( 1

εν
ενηηε

kA
kAkh

−
−

= ∞  

From the definition of the quantities η1, η∞ and A, it is found that 
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Now we have to eliminate F(k) and G(k) from equation (3.5). The equation (2.14) 

relating F(k) and θ(k,ξ) provides one of the relations for this purpose. Another relation 

between F(k) and G(k,ξ) can be obtained from equation (3.4) and the convolution 

theorem, viz; 
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−= '),'()'(),( dkkkkFkG ξχξ  

Here, ),( ξχ k  is the Fourier transform of the ),( ξχ x  function. Now changing the 

variable in equation (3.5) to k’ multiplying by ),'( ξψ kk −  and integrating we get  
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Similarly, using ),'( ξχ kk −  we find 

(3.10) [ ] ),('),'(),'(),'(),'(),'(),( ξχξεξθεξχξ kdkkGkhkkgkkkG =+−+ ∫
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Thus the slowing down equation has been transformed to two coupled Fredholm 

integral equations. These coupled integral equations can be rewritten in terms of a 



single function the following way. Multiplying equations (3.9) and (3.10) respectively 

by ),( εkg  and ),( εkh , and adding the resulting equations we get 
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      [ ]),(),(),(),( ξχεξψε kkhkkg +=  
where ),( ξkΦ  is defined as 

(3.12)  [ ]),(),(),(),(),( ξεξθεξ kGkhkkgk +=Φ  

From equations (3.7) and (3.12) we notice that ),0( ξΦ  is proportional to ),0( ξθ . 

Therefore we get 
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To complete the derivation, we have to obtain ),( ξχ k . Using equation (1.13) 

and the inverse of the convolution theorem we get 

(3.14)  )exp()exp()(),( 22* ξιξχ kkkHk −−=  

Here  is the Heaviside unit function defined as )(* kH
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   0,0 == k
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)exp()(* kkH −ι  is the Fourier transform of . Using the expression (2.16) 

for 

)1(/ 2xx +

),( ξψ k , the function ),( ξχ k  can be written as 

 (3.16)  ),()(2),( * ξψιξχ kkHk =  

Therefore, the integral equation (3.11) takes the form 
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This integral equation is slightly more complicated than the one obtained in the 

previous Chapter. Nevertheless, the problems associated with the Doppler broadened 

resonance cross-sections and the discontinuous nature of the slowing down kernel have 

been removed in this formulation. 

B. Resonance Integrals in the Zero Temperature Limit:



In the zero temperature limit it is easier to consider equation (3.9) instead of 

(3.17). Taking the limit ξ→∞ it takes the form 
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As was done earlier, we reduce this equation to a second order differential equation in 

),( ∞kθ  

(i) Derivation of a differential equation for θ

We have already seen that the kernel of the above integral equation 

(1/2) ( 'exp kk −− )  is the Green’s function of the second order differential operator: 

( )122 −dkd . Applying this operator we get 
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Using the zero temperature limiting form of the ),( ξχ x  function we find that 
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Similarly we have 
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These equations show that 
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Such a simple relation between θ(k, ξ) and G(k,ξ) does not exist for other values of ξ. 

Now equation (3.19) can be written as 
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Thus the evaluation of the zero temperature resonance integral including the resonance 

potential interference scattering effects has been reduced to the solution of this 

differential equation. A comparison with equation (2.23) shows that the inclusion of 

resonance potential interference scattering gives rise to the first derivativ  e term

dkdθ . The delta function appearing on the RHS of the above equation can be 

replaced by the discontinuity condition on dkdθ  at k=0. From equations (3.18) and 

(3.21) we find that the boundary conditions (2.27) and (2.28) on θ(k,∞) apply here also. 

(iii) WKB approximation for θ(k,∞) 



The function h(k,ε) can be written as 
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The homogenous part of equation (3.23) can be written as 
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Taking the limit ε→0, we obtain the  narrow resonance approximation, 
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We also know that equation (3.25) reduces to the above form in the asymptotic range. 

To solve equation (3.26), we make the substitution 
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It is seen that all the boundary conditions satisfied by NRθ  are also satisfied by . 

Therefore, we have 
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and is the same as given in equation (1.67). To obtain the WKB solution, we utilize the 

asymptotic form of θ(k,∞) and write 
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and C+ and C- are arbitrary constants to be determined. As was done in the previous 

Chapter using the boundary conditions (2.28) and (2.29), θ(k,∞) can be expressed as 
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The boundary conditions on  are given by )(kS ±

(3.35)   ±∞→→± kaskS 0)(

Substituting for θ(k,∞) in equation (3.25) we get 
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The upper sign stands for k>0 and the lower sign for k<0. The constants a and b are 

given by 
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The above equations for  are quite similar to these obtained in the previous 

Chapter and can be solved by the iterative method.  We consider the term: 
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as perturbation terms. In the second order approximation we get 
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Here also we find that the real and imaginary parts of  have the property )0(2
±S

   )0()0( 22
−+ += RR SS

   )0()0( 22
−+ −= II SS

Therefore the resonance integral is found to be 
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To evaluate the integrals is equation (3.38) we expand the integrands as power series in 

A. Keeping terms up to A3 we obtain  as )0(2
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where . Further, RI*
1

* 2/ βε=c n and IIn stand for the real and imaginary parts of the 

integrals in given in equal (2.64). Similarly, RVnm and IVnm denote the real and 

imaginary parts of the double integrals. 

C. The Intermediate Resonance Approximation:



In this section, we shall apply the technique of intermediate resonance 

approximation to obtain an approximate solution to the differential equation. We shall 

develop the formulae in a slightly general way and obtain the results of Goldstein [23, 

28] as a particular case. We shall also see that the new formulation circumvents some 

of the difficulties present in the intermediate resonance approximation. 

Multiplying by [1-A ν(k, ε)] equation (3.25) can be written as 
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Here, the quantities λβ  and λη  are as yet unspecified and are to be determined from 

certain conditions to be imposed on ),( ∞kθ . In the present formulation, these constants 

are considered as two independent parameters.  

The method of intermediate resonance approximation can be developed in the 

following manner. A first order approximation ),(1 ∞kθ  is obtained by neglecting all 

the terms on the RHS of equation (3.43). That is 
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The solution of this equation satisfying the three boundary conditions is given by 
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A second order approximation is obtained by substituting ),(1 ∞kθ  on the RHS of 

equation (3.43). That is 
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On the RHS the ± signs refer respectively to the cases k>0 and k<0. To solve this 

equation, we make the substitution 
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where the constants X and Y are given by 
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We notice that the boundary conditions on  are same as those on ),(*
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The continuity condition on  gives ),(*
2 ∞kθ
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Differentiating equations (3.51) and (3.52) we get 
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The quantities Z1 and Z2 are given by 
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Applying the discontinuity condition on dkd *
2θ  and using equation (3.53), we get 
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In the first and second order approximations we have two unknowns, λβ  and λη . We 

get one relation between them on imposing the condition that at k=0 the two 

approximations are equal. That is, 
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In the intermediate resonance formulation, Goldstein employed the condition that the 

resonance integrals are same in the two orders of approximation. Since ),0( ∞θ  is 

proportional to the resonance integral, we see that (3.59) is same as Goldstein’s 

condition. Thus we get 
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The next condition to be imposed on ),(1 ∞kθ  and ),(2 ∞kθ  can be on their derivatives 

at k=0. This becomes quite natural because on matching the derivative of ),(1 ∞kθ  also 

it can become a better approximation. dkdθ  at k=0 is proportional to G(0,∞). 

Therefore the two conditions together impose a further restriction that the resonance 

scattering rate is same in the two approximations. Equations (3.45), (3.54) and (3.55) 

show that if (3.60) is satisfied, we also have 
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We use RP and IP to denote the real part of the quantities in the respective brackets. 

Therefore, we impose the condition 
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Substituting for the derivatives at 0+ we get 
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The same result can be obtained by equating the derivatives at 0_. Using equation 

(3.59), we get 
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Thus we have the transcendental equations (3.60) and (3.65) to be solved to determine 

λβ  and λη . Once they are obtained, the resonance integral is given by 

(3.66)  *
0

2010 ),0(2),0(2)(
λβ

θθ IIII IR
eff =∞=∞=∞  

The condition imposed on the derivative of ),(1 ∞kθ  is the factor which makes the 

present formulation different from that of Goldstein. 

(i). Goldstein’s Method [23,28]: 

Golddstein’s transcendental equation (1.72) for the interpolation parameter λ can be 

obtained from equation (3.60). In the narrow resonance approximation, we know that 

equation (3.25) reduces to (3.26). In the wide resonance limit we have  
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From equation (3.7) we notice that the coefficient of the first derivative term is 

identically zero. That is, in the wide resonance approximation inclusion of resonance 

potential interference scattering does not modify the equations. Introducing the 

interpolation parameter λ through the definitions 
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we find that the narrow resonance and wide resonance approximations are obtained 

when λ is taken as 1 and 0 respectively. In fact, Goldstein had introduced the parameter 

by writing the slowing down operator as a linear combination of the approximate 

operators obtained in these approximations. But this leads to the same expressions for 

 and 2
λβ λη . The equations (3.68) and (3.69) take the place of our second equation 

(3.65). Using the identities, 
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and equation (3.60) it can be shown that λ is given by 
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which is same as equation (1.72) except for notational differences. When resonance 

potential interference scattering is neglected, our method does not reduce to that of 

Goldstein. The second transcendental equation (3.65) remains and a non-zero value of 

would be obtained. Then the method becomes similar to that of Pomraning and Dyos 

[31] with two interpolation parameters. 

(ii). New Transcendental Equations: 

Since the quantity of interest in the evaluation of resonance integrals is  the 

equations (3.60) and (3.65) can be rewritten as 

*
λβ
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Equation (3.7) shows that WRη =0. Thus we get 
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Thus the new equations give the limiting narrow resonance and wide resonance 

approximations. 

For a given value of  equation (3.74) is quadratic in *
λβ λη . Therefore it can be 

solved in terms of  to obtain *
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The positive root  will be a very large quantity and is to be rejected. The 

transcendental equations (3.73) and (3.78) can be solved easily by the iterative method. 

Setting 

+
λη

1ηηλ =  in equation (3.73),  can be found by iteration. Having obtained it, 

the negative root in equation (3.78) gives the new value of 

*
λβ

λη . This process can be 

repeated till their magnitudes converge to the required accuracy.  has been found to 

be positive number in all numerical calculations for U-238 resonances except for the 

one at 6.68 e.V. 

−
λη

(iii) Comparison of Resonance Integrals: 

Here we give a comparison of the zero temperature resonance integrals 

calculated by the Fourier transform method and intermediate resonance approximation. 



Tables VII and VIII give the results for the resonances of U238 in a homogenous 

mixture with hydrogen. The nuclear concentrations are such that Nu:Nh = 1 and 5. 

Tables also contain resonance integrals obtained by the numerical solution of equation 

(3.1). It is seen that the resonance integ4rals obtained by the WKB solution compares 

well with the numerical results. As seen from table VII, maximum difference is about 

4% for the resonance at 36.8% eV. For the resonances at energies 102 eV and 192 eV 

belonging to the intermediate class also the agreement is quite good. 

Tables also show that the agreement between the numerical results and those 

obtained by the new transcendental equations is fairly good. The major advantage of 

the new equations is that they can be solved easily by the iterative method. This does 

not happen to be the case with Goldstein’s equation (27). Further, the two roots are 

sufficiently separated and we are able to pick up the required root easily. In Goldstein’s 

method also equation (3.72) gives two values of λ. But they are very closely spaced and 

it becomes necessary to choose the criterion that its value of which gives the larger 

resonance integral must be chosen [27]. 

D. Solution of the integral equation for Φ(k,ξ)  

In this section we shall outline a procedure to solve the integral equation (3.11). 

We notice that the kernel of this integral equation contains the Heaviside unit function. 

The quadrature formulae for approximating any integral are applicable only when the 

integrand can be approximated by a polynomial. Hence it is not appropriate to use the 

quadrature formulae for its solution. Therefore, we attempt to expand Φ(k,ξ) in a series 

of suitable functions. In this series expansion, it would be advantageous to factorize the 

known behavior of the function Φ(k,ξ). For instance, we know that there is an 

exponential dependence in the zero temperature part of Φ(k,ξ). That is 
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where β is given by 
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The source term on the RHS of equation (3.11) shows that Φ(k,ξ) would have a 

dependence given by exp(-k2/ξ2). Further, the integral equation (3.11) shows that the 

real and imaginary parts of Φ(k,ξ) are respectively even and odd functions. 

Incorporating all these facts, we write 
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where  are related to the Hermite polynomials  through the definition, )(* kHn )(kH n
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The expansion in terms of  shows that Φ(0,ξ) given by )(* kHn
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In fact the expansion (3.81) can be in terms of any polynomials. The use of , 

rather than , makes Φ(0,ξ) to be given by C
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)(kH n o. Later on, we shall show that with 

the above expansion it is possible to obtain the matrix elements of the system of 

algebraic equations determining Cn and Dn by suitable recursion formulae. Substituting 

for Φ(k,ξ) in equation (3.11), we get 
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Thus we have a relation between the (2N+1) expansion coefficients Cn and Dn. One 

possible way of obtaining (2N+1) equations to determine Cn and Dn is by writing 

equation (3.84) for (2N+1) values of k [49]. We choose these k values as the roots of 

H2N+1 (k) which is proportional to the first term neglected from the series expansion 

(3.81). Thus the present choice eliminates the error contributed to the equations by the 

neglecting this term. One of the roots, say ko of H2N+1 (k) is zero and the remaining 2N 



roots occur as pairs with opposite sign. Writing equation (3.84) for these values of k, 

we get 
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Another reason for choosing Hermite polynomials for the expansion (3.81) may be 

pointed out here. It is clear from equation (3.87) that all the k values have to be distinct 

so that there are (2N+1) independent equations for determining all the constants Cn and 

Dn. The orthogonal polynomials H2N (k) have simple zeros distributed on the real axis 

and therefore we get (2N+1) independent equations. 

From equation (3.85) we notice that the real and imaginary parts of S(k) are 

respectively even and odd functions. Similarly, equation (3.86) shows that the real and 

imaginary parts of Y2n(k) are even and odd functions whereas that of Y2n+1(k) are odd 

and even functions respectively. Therefore, for the positive values of kj, we have 
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Here the super scripts R and I on Yn(k) and S(k) denote the real and imaginary parts. For 

the negative values of kj, we have 

(3.89)  ( )[ ]∑
=

−+−
N

n
nj

I
nj

R
njnj CkYikYkHk

0
22

*
2 )()()(exp β  

( )[ ]∑
−

=
+++ −+−+

1

0
1212

*
12 )()()(exp

N

n
nj

I
nj

R
njnj DkYikYkHki β  

NjkSkS j
I

j
R ≤≤−= 1,)()(  

Adding and subtracting equations (3.88) and (3.89), we get 
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For the zero root, we get 
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Thus we have (2N+1) unknowns and the same number of equations. The kj values 

appearing in equations (3.90) and (3.91) are the N positive roots of H2N+1 (k). 

As has been pointed out in Ref.[49] this method becomes attractive if the 

quantities Yn(kj) can be evaluated using recursion relations. This possibility will 

certainly depend on the kernel of the integral equation. We shall now show that this is 

indeed the case with equation (3.11). Splitting the integral in equation (3.86) for 

positive values of kj, we get 
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Using the recursion formulae for Hermite polynomials [66] we get 
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Thus all the  can be evaluated if  and  are known. Equation 

(3.100) clearly shows that these can be expressed in terms of error functions. The 

recursion formulae for  and  can be obtained exactly in the same way. 

They are given by 
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Once the quantities Yn(kj) are evaluated, Co can be obtained from the system of 

algebraic equations using Cramer’s rule. Thus in this method, the effort involved in 

obtained Φ(0,ξ) and hence the resonance integral would be the evaluation of two 

determinants of order (2N+1). 

E. Summary

In this Chapter we extended the Fourier transform method to include resonance 

potential interference scattering. We derived a Fredholm integral equation for a 

function related to θ(k,ξ). In the zero temperature limit, in the integral equation was 



reduced to a second order differential equation. The inclusion of resonance potential 

interference scattering introduced a first derivative term in the equation. The WKB 

method was extended to solve this equation. Further analysis of the differential 

equation led to a new formulation of the intermediate resonance approximation. Finally 

we have given a method to solve the Fredholm integral equation resulting in the 

temperature dependent case. 



 

Table-VII 

Zero Temperature Resonance integrals of U238 Resonances 

 

Resonance Integrals (barns) Resonance 

Energy (eV) NR
effI  IR

effI )1(  IR
effI )2(  WKB

effI  Numerical
effI  

6.68 4.840 4.088 4.091 4.103 4.090 

21.0 1.939 1.839 1.884 1.858 1.873 

36.8 1.316 1.672 1.663 1.566 1.621 

66.3 0.4491 0.5002 0.5178 0.5104 0.5124 

81.1 0.1305 0.1301 0.1310 0.1308 0.1309 

102.8 0.3269 0.4794 0.4645 0.4702 0.4676 

116.8 0.1757 0.1826 0.1921 0.1933 0.1935 

192.0 0.1425 0.2175 0.2086 0.2246 0.2192 

209.0 0.1104 0.1348 0.1352 0.1403 0.1399 

238.0 0.0756 0.0806 0.0835 0.0848 0.0849 

 

Notes: 

1. Nuclear concentrations are such that Nu:Nh=1:1 

2. Resonance parameters used are given in Appendix-II 

3. Resonance potential interference scattering is included. 

4.  refers to Goldstein’s intermediate resonance approximation  IR
effI )1(

5.  refers to intermediate resonance approximation of Chapter-III IR
effI )2(

 



Table-VIII 

Zero Temperature Resonance integrals of U238 Resonances 

 

Resonance Integrals (barns) Resonance 

Energy (eV) NR
effI  IR

effI )1(  IR
effI )2(  WKB

effI  Numerical
effI  

6.68 9.119 9.106 9.116 9.114 9.115 

21.0 3.591 4.080 4.076 4.062 4.062 

36.8 2.328 3.358 3.306 3.307 3.285 

66.3 0.8127 0.9520 0.9472 0.9561 0.9547 

81.1 0.2439 0.2467 0.2475 0.2477 0.2477 

102.8 0.5636 0.7843 0.7649 0.7960 0.7880 

116.8 0.3198 0.3451 0.3447 0.3465 0.3463 

192.0 0.2403 0.3335 0.3239 0.3410 0.3380 

209.0 0.1905 0.2229 0.2211 0.2251 0.2248 

238.0 0.1341 0.1438 0.1435 0.1443 0.1443 

 

Notes: 

1. Nuclear concentrations are such that Nu:Nh=1:5 

2. Resonance parameters used are given in Appendix-II 

3. Resonance potential interference scattering is included. 

4.  refers to Goldstein’s intermediate resonance approximation  IR
effI )1(

5.  refers to intermediate resonance approximation of Chapter-III IR
effI )2(

 



CHAPTER-IV 

FOURIER TRANSFORM FOR EVALUATING RESONANCE 
 

INTERACTION EFFECTS 
 

In earlier chapters the Fourier transform method for evaluating resonance 

integrals of isolated resonances was developed. When resonances are isolated it is 

possible to use the unperturbed flux distribution, viz., the 1/e distribution above the 

resonance under consideration. Thus one is able to calculate the absorption rate in each 

resonance independently. When resonances of the absorber are closely spaced the 

above assumption breaks down. 

For fissile nuclides the overlapping of the resonances is important in calculating 

the neutron absorption rate [1]. This effect is generally important for fertile nuclides in 

the higher energy range and hence it can be analyzed in narrow resonance 

approximation. However, there are other resonances such as the two low energy 

resonances of Th232 which overlap to a certain extent. For these resonances the 

absorption rate in the first resonance perturbs the flux distribution in the second 

resonance with the result that the overall absorption is reduced in comparison to that 

obtained in the isolated resonance approximation. The overlap effect would also lead to 

a modification of the Doppler coefficient of resonance absorption. 

The problem of overlapping resonances was first analyzed by Corngold and 

Schermer [35] using the variational approach to the slowing down equation. Later, 

using the narrow resonance approximation to evaluate the collision integrals, Hwang 

[51,65], Haggblom [66] and Jawas [67] estimated interaction effects. Our aim is to 

extend the Fourier transform method to treat this problem [50]. 

A. Derivation Of The Fourier Transformed Equations:

We consider a homogenous mixture of a moderator and absorber which has two 

overlapping resonances. With the narrow resonance approximation for the moderator 

collision integral the slowing down equation (1.15) becomes 
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The microscopic scattering and absorption cross-sections are given by the superposition 

of the Breit-Wigner cross-sections for individual resonances. 
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Let us assume that we are interested in calculating the absorption rate in the 

resonance denoted by the subscript 1. Now, the variable e equation (4.1) can be 

changed to x defined by (2.2) 
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The equation (4.1) becomes 
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Resonance integral of the first resonance is given by 
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The quantities ψj and χj and are given by 
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The parameter µj determines the magnitude of the overlap effect. If it is very large, 

equations (4.5) and (4.7) show that the presence of the second resonance will not affect 

the nature of f(x) near the origin and hence the resonance integral, . )()1( ξeffI

We define the quantities 
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On Fourier transformation of equation (4.5) we get 
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This equation is now rewritten as 
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In order to eliminate F(k) from this equation further relations between F(k), ),( jj k ξθ  

and ),( jj kG ξ  are to be obtained. On applying the convolution theorem to equations 

(4.10) and (4.11), we obtain 
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Here ),( jj k ξψ  and ),( jj k ξχ  are respectively the Fourier transforms of ),( jj x ξψ  and 

),( jj x ξχ . The transform ),( 11 ξψ k  is same as ),( 1ξψ k . To obtain ),( 22 ξψ k  we use 



equation (4.8) and the integral representation of the ),( ξψ x  function. Applying the 

inverse of the convolution theorem, we get 
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The transforms ),( jj k ξχ  are obtained as in equation (3.14) 
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where H*(k) is the Heaviside unit function. 

Now changing the variable to k’ in equation (4.13), then multiplying it by 

),'( jj kk ξψ −  and integrating over k’ we get 
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Similarly multiplying by ),'( jj kk ξχ −  we get 
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Thus we have transformed the slowing down equation to the above coupled Fredholm 

integral equations. The temperature dependent resonance integral including the 

interaction effect is given by 
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),0( 11 ξθ can be obtained as the solution of the coupled Fredholm integral equations 

(4.20) and (4.21). These equations can be arranged to contain one unknown function 

defined by  
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Multiplying equation (4.20) by gj(k,ε ) and equation (4.21) by hj(k,ε ) and adding the 

resulting equations and summing  over the values of j, we get 
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Using the explicit expression for ),( 11 ξψ k  and equation (4.20) we find 
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Thus, ),0( 11 ξθ  is obtained from the solution of the coupled integral equations or using 

equations (4.24) and (4.25). 

B. Resonance Interaction Effect in the Zero Temperature Limit:

In this section we show that in the zero temperature limit the integral equations 

can be reduced to coupled second order differential equations. Taking the limit ξj→∞ in 

equations (4.20) we get 
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(i) Reduction to coupled differential equations:

We already know that ),'(1 ∞− kkψ  is the Green’s function of the operator 
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Similarly ),'(2 ∞− kkψ  can be identified as the Green’s function of the operator: 2O
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These Green’s functions satisfy the boundary conditions 
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From the above two equations we get 
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Thus the coupled differential equations (4.32) and (4.33) can be written in terms of 

),( ∞kjθ  alone. The boundary conditions on ),( ∞kjθ  can be obtained from equation  

(4.26) by putting k=±∞: 
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Using the explicit expressions for ),( εkg j  and ),( εkhj  the differential equations for 

),( ∞kjθ  can be written in the matrix notation 
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The quantities , ,  and  are square matrices of order two defined by 1D 2D 1M 2M
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From the definition of the transforms ),( ∞kjθ  we know that they are continues at k=0. 

Further, the delta function on the RHS of equation (4.39) can be replaced by the 

discontinuity condition on dθ
r

/dk. Thus we have to solve the homogenous system of 

second order differential equations. 
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subject to the boundary conditions 
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In equation (4.46), 0
r

 denotes a two dimensional null vector. Before attempting to 

solve this equation by WKB method we consider the narrow resonance approximation. 

(ii) Solution in the narrow resonance approximation:

The narrow resonance approximation is obtained by taking the limit ε→∞. Then the 

function ν(k, ε)→0 and we get 
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Since for large value of k the function ν(k, ε)→0, the above equation represents the 

asymptotic form of equation (4.46) also. Now, we try a solution of the form 
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Here E denotes a unit matrix of order two. For a non-trivial solution )(0 wθ
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chosen as the roots of the secular equation  
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Since the coefficients of various powers of w are real, the four roots will occur as 

conjugate pairs. Let them be denoted by 
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 The boundary conditions (4.48) and (4.49) give 
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 is real demands that  and  should occur as conjugate 
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Equation (4.56) shows that 
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Thus we find that once the roots of the polynomial equation (4.54) are obtained, the 

resonance integral in the narrow resonance approximation can be easily evaluated. 

(iii) WKB approximation to system of differential equations  

For obtaining the solution of the system of equations (4.46), we write as before 
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 are the eigenvectors of the system (4.52) and are given by equation 
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have incorporated the asymptotic part of the solution (same as the solution in the 
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The upper sign stands for k > 0 and the lower sign for k<0. Applying the boundary 

conditions (4.48) and (4.49) we get 
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When equations (4.67) and solved by the interactive method,  and  would 

occur as conjugate functions. Therefore we can separate  into real and imaginary 

parts: 
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Equation (4.67) is a vector equation for  and can be reduced to a scalar equation 
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where 
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Another possibility is to take the first component of the vector equation (4.67). The 

resulting equation would be exactly similar to (4.71) but now the quantities , , and 

 are given by 

+
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In any case we find that the equations to be solved to determine  and  are 

very much similar to the types encountered in earlier chapters. The first order 

approximation to  gives 
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Although the integral can be expanded as a power series in A, the resulting integrals are 

complicated for analytical evaluation. The results given below for the two overlapping 

resonances of Th232 were obtained in the first order approximation by a numerical 

evaluation of the integrals (4.74). 

(iv) Interaction effect on zero-temperature resonance integrals -Th232 resonances

The two low energy resonances of Th232 at energies 21.8 and 23.47 eV are 

somewhat close together. The resonance parameters given in Appendix-I show that the 

scattering widths are much smaller than the total widths. Therefore resonance potential 

interference scattering can be neglected. In table-X we give the zero temperature 

resonance integrals with and without the interaction effect for various values of σm. 

When interaction between the resonances is neglected, the resonance integrals 

calculated in the first and second order perturbation approximations match well. 

Therefore the results obtained in the first order perturbation approximation showing the 

effect of interaction are of the correct magnitude. The table also contains resonance 

integrals calculated in the narrow resonance approximation. 

The general observation is that the interaction effect decreases as the moderator 

scattering cross-section σm increases. This happens because as σm increases, the value 

of the resonance integral approaches the infinite dilution limit which corresponds to the 

unperturbed 1/e energy distribution. Further it is found that the magnitude of the 

interaction effect calculated in the narrow resonance approximation is of appropriate 

magnitude. 

C. Resonance Interaction Effect At Non-Zero Temperature:

Having solved the problem of resonance interaction in the rigorous way for the 

zero temperature-limit, we now turn our attention to the temperature dependent 

problem. We mentioned that for fertile nuclides the overlap effect is significant in the 

higher energy range. Therefore they can be studied in the narrow resonance 

approximation. In the zero temperature limit we have seen that for the low energy 

resonances of Th232 the narrow resonance approximation can be applied to obtain the 

interaction effect. Hence we shall discuss this problem further in this approximation 

only. 



φ(e) can be obtained in the narrow resonance approximation from equation (4.1) 

by replacing φ(e’) and σ(e’) in the collision integral by their asymptotic values. This is 

equivalent to replacing the integrand in equation (4.5) by 1. Therefore we get 
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and the resonance integral becomes 
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where J* is the generalized J-function defined as [66,67]  
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Thus the problem reduces to the evaluation of this complicated function. Haggblom 

[65] and Jawas [67] assume that the interaction term  is small and therefore 

J* can be expanded in a series. Neglecting higher order terms, they approximate J* as 
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Here the first term J is the ordinary J-function. In evaluating J*, Hwang [51] has 

avoided the series expansion by rewriting it as 

(4.79)  { }
{ }

dxJJ

j
jjjj

∫
∑

∞

∞−

= ⎭
⎬
⎫

⎩
⎨
⎧

++++

+
−=

2

1

2
111

2
1

222
2
21*

11
2
1

χηψγχηψγ

χηψγψ  

An accurate evaluation of J* from equation (4.77) will be quite difficult and is the 

reason for separating the overlap part as given in equations (4.78) and (4.79). He then 

evaluates the integrals using Jacobi quadrature formulae. In any case it is clear that the 

calculation of J* function leads to the evaluation of very complicated integrals. 

In the narrow resonance approximation equations (4.20) for j=1 gives 
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This equation is obtained by replacing gn(k,ε) and hn(k,ε) by the constant  and 2
nγ nη . 

It is possible to eliminate ( 22 , )ξθ k  and ( )22 ,ξkG  from this equation and obtain a single 

equation for ( 11 , )ξθ k . Using equation (4.15), we have  
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Interchanging the order of integration, we get 
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Changing the variable of integration k’ in the second integral to (k-k*+k”), we get 
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Interchanging the order of integration again and using equation (4.15), we get 
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Similarly using equation (4.16) we can show that 
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Using equations (4.84) and (4.85) in equation (4.80), we get 
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The kernel of this integral equation is of the displacement type. Therefore on taking the 

inverse transform and using the convolution theorem we get 
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Solving for F(x,ξ1) from equation (4.87) and again taking the Fourier transform we get 
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On comparison with equation (4.77) we find that the J* function is given by 
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Now our aim is to solve the integral equation (4.86) using the quadrature method. 

Neglecting terms arising from resonance potential interference scattering, we get 
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To apply the quadrature method we write 
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where ( ∞,1 k )θ  is the zero temperature part of the solution and is given by equation 

(4.56). Substituting from equations (4.92) and (4.93) and applying the quadrature 

formula, equation (4.91) can be converted to the system of algebraic equations. 
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Here ki and Wi are the roots and weights of the quadrature formula of order N and 

ξ*=ξ1/M. Further, Z(ξ* ki) and S(ξ* ki) are given by 

(4.95)  ( ) { } { }22***2
2

**2
1

* /||exp||exp MtkkikkkZ iiiii −+−+−= ξµξνγνξγξ  

and 

(4.96)  ( ) { } ( )∞−−= ,exp
2
1 *

1
**

iii kkkS ξθξξ  

( ) ( ){ } ( ){ }22**
1

* /22exp, MkkkkkZkdk ii +−−∞− ∫
∞

∞−
ξξθξ  



From the integral equation (4.91) we know that the real and imaginary parts of ( )11 ,ξθ k  

and hence that of ( 11 , )ξφ k  are respectively even and odd functions. Using this fact and 

arranging the order of the roots and weights of the quadrature formula as indicated in 

Chapter-II, it is possible to reduce (4.94) to a system of N real equations. Choice of the 

parameter M= 2.2 +2ξ1 and other details which make ( )ik*
1 ξφ  to give the J* function 

directly are exactly as discussed earlier and hence will not be repeated here. 

Using this method we estimated the effect of interaction on the Doppler 

coefficients of the Th232 resonances. Results in Table-XI show that the interaction 

effect is destructive and leads to a reduction in Doppler coefficient for low temperature. 

This is expected because when resonances overlap broadening of the resonances 

introduces lesser changes in the neutron cross-sections and hence in the neutron 

absorption rate. Once again we note that the effect of interaction decreases as a 

moderator scattering cross-section increases. 

D. Summary

In this Chapter we extended the Fourier transform method to treat the problem 

of interacting resonances of an absorber. For the case of two closely spaced resonances 

the slowing down equation was converted to a Fredholm integral equation. In the zero 

temperature limit the problem was reduced to the solution of two coupled second order 

differential equations. The WKB method was extended to solve these equations. The 

temperature dependent problem was analyzed in the narrow resonance approximation 

only. Solution of the Fredholm integral equation using the quadrature formulae gave us 

a new method to evaluate the generalized J-function.  Finally the method of this 

Chapter was applied to evaluate the effect of interaction of the two low energy 

resonances of Th232. 



 

Table-X 

Zero Temperature Resonance integrals of Th232 Resonances 

 

Resonance Energy 21.8 eV 

NR Approximation WKB Approximation 

Without interaction 

σm 

(barns) Without 
interaction 

With 
interaction 1-order 2-order

With 
interaction 

20 0.9373 0.9001 0.8206 0.8229 0.7785 

30 1.082 1.048 0.9982 0.9988 0.9635 

40 1.209 1.178 1.147 1.147 1.116 

50 1.324 1.295 1.277 1.277 1.248 

 

Resonance Energy 22.47 eV 

NR Approximation WKB Approximation 

Without interaction 

σm 

(barns) Without 
interaction 

With 
interaction 1-order 2-order

With 
interaction 

20 1.119 1.084 1.002 1.005 0.9644 

30 1.292 1.260 1.221 1.221 1.129 

40 1.444 1.415 1.403 1.403 1.374 

50 1.582 1.555 1.563 1.563 1.536 

 

Notes: 

1. Resonance parameters used are given in Appendix-II 

2. Resonance potential interference scattering is neglected. 

 



Table-XI 

Doppler Coefficient (104 ∆Ieff /∆T) of Th232 Resonances 

 

21.8 eV 22.47 eV 
σm 

(barns) T (°K) Without 
interaction 

With 
interaction 

Without 
interaction 

With 
interaction  

0-300 3.367 0.9782 2.413 1.166 

300-600 2.881 4.261 2.395 2.462 20 

600-900 2.551 3.013 2.112 2.352 

0-300 4.802 1.600 3.581 1.936 

300-600 4.056 6.087 3.329 3.965 30 

600-900 3.493 3.955 3.026 3.106 

0-300 6.351 2.320 4.830 2.783 

300-600 5.143 7.765 4.329 5.518 40 

600-900 4.339 5.023 3.851 3.783 

0-300 7.931 3.033 6.217 3.668 

300-600 6.192 9.529 5.249 7.066 50 

600-900 5.140 5.941 4.653 4.469 

 

Notes: 

1. Resonance parameters used are given in Appendix-II 

2. Calculations have been done using NR approximation. 

 



CHAPTER-V 

FOURIER TRANSFORM METHOD FOR TREATING THE  MODERATOR  

AND ABSORBER COLLISION INTEGRALS EXACTLY 

 
In all the previous chapters we were working under the approximation that the 

moderator collision integral can be treated in the narrow resonance approximation. In 

most of the situations this approximation is adequate, however, from a mathematical 

standpoint the implications of this approximation are to be analyzed. The present 

Chapter will be devoted for this purpose. 

The basic problem in resonance absorption theory is the solution of the initial 

value problem posed by the slowing down equation and the normalization condition on 

φ(e) viz., φ(e)~1/e when e>>er. In treating the moderator collision integral in the 

narrow resonance approximation, the asymptotic form of φ(e) is required and we were 

using the normalization condition explicitly in the asymptotic form. The resulting 

equation is an inhomogeneous equation. Thus we find that the basic structure of the 

problem is modified by the introduction of narrow resonance approximation for 

moderator collision integral in that a homogenous equation is converted into an 

inhomogeneous equation. The main aim of this Chapter is to study the mathematical 

properties of the original homogenous equation and the initial value problem using 

Fourier transforms. In order to simplify the treatment we shall assume that resonance 

potential interference scattering can be neglected. 

A: Derivation of the Freedom Integral Equation: 

The equation to be treated in this situation is (1.23).  Substituting the resonance 

cross-sections, equation (1.23) becomes 
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This equation shows that for large values of x when, 0),( ≈ξψ y  for x≤ y≤ x+ε, f(x) = c, 

a constant, is a solution. This constant is to be normalized to unity so that resonance 

integral is given by equation (1.32). Introducing the discontinuity factors H(x,y,ε ) and 

H(x,y,εm), we get 
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In terms of F(k) and θ(k,ξ), equation (5.3) can be rewritten as  
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On Fourier transformation we get 
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Our aim is to convert this relation between F(k) and θ(k,ξ) into an equation in θ(k,ξ). 

But we notice that 
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The zero of this function at k=0 is of first order. Therefore F(k) can be a distribution 

[52] and is given by 

(5.7)  ( )
( ) )(

),(1),(1
),(),()(

22
1 k

kAkA
kkPkF

m

δλ
ενεν

ξθενγγ
≡⎥

⎦

⎤
⎢
⎣

⎡
−−−

−
+ ∞  

The alphabet P in front of the square bracket denotes the principle value of the terms 

inside and λ is an arbitrary constant. The above equation can be rewritten as 
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Changing the variable in equation (5.8) to k’, multiplying by ),'( ξψ kk −  and 

integrating over k’ we get 
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In obtaining this equation we have made use of the relation (2.14). To complete the 

derivation of the Fredholm integral equation we have to evaluate the constant, λ. So far 



we have not made use of the normalization condition of f(x). Thus it is clear that λ is to 

be obtained using this condition. Taking the inverse transform of equation (5.8) we get 
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Substituting for θ(k,ξ) from equation (2.8) we find 
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Since R(k) is analytic in the lower half of the complex plane, Z(x-y) can be evaluated 

easily using the residue theorem when (x-y)>0. Thus we get [52] 
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When (x-y)< 0, the poles of R(k) in the upper half of the complex plane also contribute 

to the integral. For our purpose it is sufficient to obtain the result (5.14). Equation 

(5.12) can now be rewritten as 
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Taking the limit x→∞ and using the normalization condition on f (x) we get 

(5.16)  ( ) ),0(1,)(
2

1 ξθξψ
π

λ QdyyyfQ
−=−= ∫

∞

∞−

 

Therefore equation (5.10) becomes 
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If ),0( ξθ  is obtained from this equation, Ieff(ξ) equals ),0(2 0 ξθI   

Introduction of the arbitrary constant λ and the above method of determining it 

did not arise in earlier chapters. This happened because in evaluating the moderator 

collision integral in the narrow resonance approximation, we used the normalization 

condition on f(x) explicitly. The central point in the above derivation is the realization 



that F(k) is a distribution [52]. The steps involved in going from equation (5.5) to (5.7) 

are similar to those encountered in Case’s method of solving plane geometry transport 

problems [53]. 

In the narrow resonance approximation to moderator collision integral ∞→mε  

and we have 
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Therefore R(k)/k becomes regular at k=0 and we get back equation (2.15) of Chapter-II. 

B Zero Temperature Limit:

In this limit equation (5.17) becomes 
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In the following it will be shown that ),( ∞kθ  satisfies a second order differential 

equation. Because of the presence of the principal value term we do not use the fact that 

½ exp (-| k –k’|) is the Green’s function of the operator (d2/dk2-1). For k>τ, a small 

positive constant, equation (5.10) can be written as 
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For brevity we have used the notation, 
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Differentiating equation (5.20) with respect to k we get 
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Differentiating with respect to k again and using equation (5.20) we get 
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Differentiating with respect to k we get 
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Differentiating with respect to k again, 
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Thus, ),( ∞kθ  satisfies the same differential equation for the positive and negative 

halves of the real axis. 

The boundary conditions (2.27) and (2.28) on ),( ∞kθ  are applicable here also. 

In order to solve the above boundary value problem, one more condition on at k=0 is 

required. Putting k=+τ and -τ respectively in equations (5.22) and (5.25) and 

subtracting the resulting equations we get 
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In the limit τ→0, the integral terms in the above equation cancel out and we get 
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This completes the derivation of the differential equation and the boundary conditions. 

When ∞→mε  equation (5.28) reduces to (2.29) obtained in Chapter-II. 

The origin k=0 is a regular singular point of the differential equations (5.23) and 

(5.26) [68]. Further, the singularity is of first order. Therefore both the independent 

solutions of the differential equations are regular at k=0 [68]. Methods for solving these 

equations to evaluate  the resonance integral have not been developed completely and 

will not be presented here. 

D. Summary  

In this Chapter we generalized the Fourier transform method relaxing the 

assumption of narrow resonance approximation to the moderator collision integral. The 

initial value problem posed by the homogenous equation (5.1) and the normalization 

condition on f(x) has been reduced to a boundary value problem in the Fourier 



transform space. This reduction removes the discontinuous nature of the kernel of the 

integral equation for f(x). In this process we found it necessary to make use of 

elementary ideas from the theory of distributions [52]. In the zero temperature limit we 

reduced the problem to solving a second order differential equation. 



Conclusions 

The phenomenon of resonance absorption plays a crucial role in determining the 

criticality, conversion ratios and the reactivity coefficients of nuclear reactor systems. 

Thus it has been the subject of many investigations in the past. Essentially the problem 

involves the solution of the integral equation of neutron slowing down theory when the 

parameters of the equation, namely the cross-sections, are given by the Doppler 

broadened Breit-Wigner formulae. In these investigations the quantity of direct 

physical interest is not the detailed solution but an integral parameter called the 

resonance integral which determines the total absorption rate in the resonance. 

Because of the doubly discontinuous nature of the kernel of the slowing down 

equation and the complicated form of the Doppler broadened cross-sections (only the 

integral representations being available) it is generally not possible to use the analytical 

methods for solving this problem. Recourse has therefore to be made to the numerical 

methods. However there are several questions for which numerical methods are 

inappropriate, for example, the assessment of the errors in Doppler coefficient 

computations due to the neglect ion of the overlapping of neighboring resonances. 

Further, the analytical methods throw greater light on the basic structure of the 

equation. Our aim in this thesis has been to study as to how far the standard techniques 

of applied Mathematics can be used to obtain the solution of this problem. 

We have seen that by using the Fourier transforms the slowing down equation 

can be converted into an integral equation with continuous kernel – in fact a Fredholm 

integral equation over the interval (-∞,∞). Further the cross-sections have simple 

analytical representations in the Fourier space. Lastly, the Fourier transform can be so 

defined as to directly give the resonance integral, being the value at the origin, thus 

avoiding the need of later evaluation of a linear functional of the solution vector. The 

use of Fourier transforms thus provides an opportunity to analytically solve some of the 

resonance absorption problems. 

The three Chapters (Chapter-II to IV) of this thesis have been devoted to the 

evaluation of resonance integrals analytically as far as possible. Thus we have found 

that at zero temperature the problem can be reduced to the solution of a second order 

differential equation which can be solved by the WKB method. We have thus derived 

accurate expressions for the zero temperature resonance integrals. Various 

complications like resonance potential interference scattering or the overlap of 



neighboring resonances pose further difficulties, as in other methods, but are not 

insurmountable. At higher temperatures, for evaluating Doppler coefficients, we have 

to solve the Fourier transformed integral equation itself. Here we observed that the 

corrections due to higher temperatures, that is, those related to the Doppler coefficients, 

can be obtained by the use of Gauss-Hermite quadratures for solving the integral 

equation. Again various complications pose further problems but they can all be 

accounted for in a successful manner. 

In the last Chapter we have studied the use of Fourier transforms for solving the 

homogenous form of the integral equation of slowing down theory. As is well known 

the integral transforms are generally used for solving inhomogeneous equations. 

However we have seen that in this case the Fourier transformed solution is a 

distribution in the sense of Schwarts and that the normalization condition determines 

the singular part of this distribution. The regular part of this distribution is thus 

determined by solving an inhomogeneous equation whose free term is determined by 

the singular part, that is, the normalization condition. 

In conclusion, therefore, we have seen that the use of some standard techniques 

of applied Mathematics like Fourier transforms WKB method and Gauss-Hermite 

quadratures can be profitably used to analytically solve some resonance absorption 

problems. We believe that this is a common occurrence and that classical methods with 

slight modifications can profitably be used to study many useful problems of reactor 

physics and other practical subjects. 

xxxxx 

 



APPENDIX–I

The integrals required for the evaluation of the zero temperature resonance 

integrals are 
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These integrals can be evaluated analytically. For instance, consider RI1(c) given by 
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For n=2, one of the integrals to be evaluated is 
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where we have used equations (I.5) and (I.7). Integrating equation (I.12) with respect to 

c, and noting that J1(c) =0 at c= 0, we get 
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The other integral for n=2 is given by 
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Since K1(c)=0 at c=0, we get 
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Integrating with respect to c, using the result J2(c)=0 at c=0 and equation (I.15) we get 
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Proceeding along these lines RI3(c) and II3(c) can be evaluated. Final results are: 
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Real part of the double integral V11(c) is 
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Now, consider the integral 
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Since J1(c)=0 at c=0, we get 

(I.29)  ( ) ( ) ( )
∫ +

×−
= −

c
k

c
kcckcekcJ

0
21 '1

'sin''cos,  

Proceeding exactly in the same way we can show that 
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The first integral in the square bracket can be evaluated using equations (I.5) and (I.7). 

The other integrals can be shown to be 
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The steps involved in getting these results are as given earlier. Therefore equation 

(I.31) becomes 
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The last integration can be performed and we get 
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Thus we have reduced the double integral to a single integral. Imaginary part of V11(c) 

is given by 
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Proceeding along the lines given earlier, it can be reduced to the form 
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The integrals in equations (I.35) and (I.37) have to be evaluated numerically. It was not 

possible to simplify V12(c) and V21(c). In the calculations they were evaluated using 

Simpson’s rule. 
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APPENDIX–II

 

Parameters of U238 Resonances

Er (eV) Γn (eV) Γr (eV) σ0 (barns) 

6.68 0.0015 0.025 22058.9 

21.0 0.0089 0.025 32545.1 

36.8 0.034 0.025 40765.6 

66.3 0.018 0.025 16436.3 

81.1 0.002 0.025 2377.7 

102.8 0.067 0.025 18442.0 

116.8 0.014 0.025 8000.8 

192.0 0.140 0.025 11600.0 

209.0 0.060 0.025 8792.3 

238.0 0.028 0.025 5778.6 

 

1. Statistical spin factor = 1 

2. Potential scattering cross-section = 10 barns 

3. Scattering cross-section of hydrogen = 20.2 barns 

 

 

Parameters of Th232 Resonances

Er (eV) Γn (eV) Γr (eV) σ0 (barns) 

21.8 0.0021 0.0245 9427.5 

23.47 0.004 0.0245 15567.4 

 

4. Statistical spin factor = 1 

5. Potential scattering cross-section = 10 barns 

 

Xxxxxx 
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