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About the book
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scales. For describing such phenomena, Kenneth Wilson, around 1970, put
forward the renormalization group theory. The basic ideas and techniques
of the theory are elaborated in this monograph using some simple models of
ferromagnetic critical behavior. Brief outlines of applications to some of the
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Foreword

The subject of phase transitions has been at the frontier of condensed mat-

ter physics research for several decades. Continuous phase transitions are

somewhat unique as several systems, for instance, a magnet near the Curie

temperature, a fluid at the onset of condensation, etc., which are very distinct

at a microscopic level, show a lot of similarities in their behaviour near the

transition points. A physical theory to explain the universality observed in

these systems, and capable of quantitative predictions, was lacking for a long

period of time. Around 1971, Kenneth Wilson showed that the renormaliza-

tion group theory is an adequate framework for describing phase transition

phenomena. Since then, there has been a surge of activity in this field and

many other related areas. Cooperative interaction among the constituent units

is the key issue in all these fields.

Books on such specialized topics are indeed necessary for introducing the

student community to newer areas of physics. The books published from the

west are often out of reach of an Indian graduate student. To alleviate matters,

the Indian Physics Association has been bringing out monographs on topics

of current interest in physics. In the present volume by S. V. G. Menon,

the renormalization group theory is introduced, and its basic concepts and

techniques are elaborated, with applications to some of the key problems.

Almost all the aspects are developed from a basic level and so it is quite

self contained. Each chapter is accompanied by a list of important references

which would be helpful for further study. I hope that graduate students and

researchers desirous of learning renormalization group theory would find this

monograph valuable.

R. Chidambaram

Chairman, Atomic Energy Commission
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Preface

Renormalization group theory is a framework for describing those phenom-
ena that involve a multitude of scales of variations of microscopic quantities.
Systems in the vicinity of continuous phase transitions have spatial correla-
tions at all length scales. There are other problems in percolation theory,
polymer physics, etc., where the crux of the matter is again the occurrence
of multiple length scales in spatial structures. Time scales and length scales
of different sizes are involved in the dynamical evolution of systems close to
phase transitions. Same is the situation in turbulence in fluid flow. These
phenomena lacked a proper description till the advent of the renormalization
group theory. Successful theories of physics till then could incorporate at best
a few scales of variations of microscopic quantities. The basic aspects of the
renormalization group theory were put forward, by Kenneth Wilson, in refer-
ence to the problem of continuous phase transitions. Since then, the theory
has been developed further, and applied to a variety of problems in diverse
fields involving cooperative behaviour. Now it is an accepted fact that the
renormalization group theory is the main tool to be used in elucidating the
finer aspects of many body physics. There is even the possibility of deriving
statistical mechanics itself from very basic principles.

The renormalization group theory and the pertinent background material
are introduced and applied to some important problems in this monograph. It
grew out of a course of lectures I have given in the Theoretical Physics Division
of the Bhabha Atomic Research Centre. Though the course was modeled along
the works of S. Ma (1976) and M. E. Fisher (1982), my attempt was to make
it simpler for a beginner by supplementing appropriate intermediate material
from several other references cited later. The monograph begins with a histor-
ical survey of thermal phase transitions. The background material leading to
the renormalization group theory is covered in the first three chapters. Then,
the basic techniques of the theory are introduced and applied to magnetic
critical phenomena in the next four chapters. The momentum space approach
as well as the real space techniques are, thus, discussed in detail. Finally, brief
outlines of applications of the theory to some of the related areas are presented
in the last chapter. I have tried to discuss all the relevant aspects from a ba-
sic level so that the monograph can be read without any prior knowledge of
the subject. Some elementary knowledge of statistical mechanics is expected,
however, nothing more than the concepts of Gibb’s canonical distribution, sta-
tistical averages and free energy are necessary. Sometimes the mathematical
equations are lengthy, but there are no intrinsic complications and one can
easily go through them. I hope that this monograph would provide a simple
introduction to a fascinating field of modern theoretical physics.
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Historical Survey

The topic of phase transitions and critical phenomena has a history of more
than one hundred years and what follows is a brief survey. The subject orig-
inated around 1869 with Thomas Andrews’ experiments on carbon dioxide.
During the first period, very important experiments on magnetic materials and
binary alloys evolved along with theoretical developments which are known to-
day as mean field theories. In 1944, Onsager published the exact statistical
mechanical solution of a two dimensional magnetic system and initiated the
second period in the historical development of the subject. During the period
up to about 1965, similar exact and numerical calculations on model systems
established the inadequacy of mean field theories in the neighborhood of phase
transition points. Then, up to about 1971, several people attempted to put
together the results of rigorous calculations and mean field theories. All this
work culminated in formulating, empirically, the hypothesis of universality in
the behaviour of systems near phase transition point. In 1971, K.G.Wilson
developed the renormalization group approach as a new method for study-
ing critical phenomena and thus laid a theoretical basis for understanding
universal behaviour. Elaboration of this theory is the primary motif of this
monograph.

Early Stage (1869 - 1944)

Even though it was known earlier that certain substances ceased to exist in
the liquid phase above a certain temperature, it was Andrews’ accurate mea-
surements of the isotherms of carbon dioxide which established the continuity
of the gaseous and liquid phases of matter. He introduced the term ‘critical
point’ for a specific point (Pc, Tc, Vc) in the phase diagram at which the liquid
and gaseous phases merged into a single fluid phase. He also showed that by a
proper choice of a path in the phase diagram, one can pass from the liquid to
gaseous phase without encountering any discontinuity in density. Few years
later (1873) Van der Waals developed a generalization of the equation of state
for ideal gases to provide a theoretical explanation of Andrew’s isotherms for
carbon dioxide. He argued that the attractive forces between the molecules

1



2 Renormalization Group Theory

in the gas give rise to an internal pressure, which decreases the pressure in
a gas, and due to the finite size of the molecules, the available volume for
molecular motion is less than that of the container. Employing these ideas
and invoking kinetic theory concepts to compute the internal pressure, Van
der Waals proposed his famous equation of state. The modified equation of
state explained the isotherms of carbon dioxide and also showed the existence
of the critical point. Further, it brought out the idea of a universal equation of
state in the sense that the isotherms of all gases merged into a single one when
expressed in terms of reduced variables. Maxwell noted that below the critical
temperature, Van der Waals equation showed a range of thermodynamically
unstable densities and rectified this drawback with his now well known method
of ‘equal area construction’.

The observation of the striking phenomena associated with changes in the
scattering of light by fluids near the critical temperature opened up the topic
of density fluctuations. Fluids, which are transparent normally, show signif-
icant changes in color and finally become opaque as the critical temperature
is approached. This phenomenon is known as critical opalescence and was
explained by Smoluchowski (1908) and Einstein (1910) as arising out of large
density fluctuations. Using Einstein’s thermodynamic formula for the mean
square density fluctuation

< (4ρ) >2 =
ρ2

V
kBTKT ,

where KT is the isothermal compressibility, and Rayleigh’s formula for inco-
herent light scattering cross-section, they had concluded that the intensity
of scattered light (of wavelength λ) varies as I ∼ KT/λ

4 . As the critical
temperature is approached, KT increases significantly and hence light scatter-
ing becomes quite predominant making the fluid opaque. This argument had
not accounted for the presence of correlation between density fluctuations at
different space points in the fluid. To overcome this drawback, Ornstein and
Zernike (in 1914) introduced the concept of the density-density correlation
function or the pair distribution function g(r). They derived a relation con-
necting KT and the volume integral of g(r) which showed that large spatial
correlations are developed in a fluid as the critical temperature is approached.
Introducing another correlation function, which signifies the direct interaction
between two atoms separated in space, they derived an integral equation for
g(r) which yielded the general result

g(r)− 1 ∼ 1

r
exp(−r

ξ
).

The parameter ξ, which was shown to be proportional to
√
KT , is called

the correlation length and it characterizes the spatial length scale over which
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correlations exit in a fluid. Now, as critical temperature is approached, KT

increases and hence large spatial correlations develop. Appropriately, the as-
sumption of incoherent scattering had to be replaced with that of coherent
scattering from the correlated regions. The scattered light intensity corre-
sponding to a wave vector change q is then found to be

I(q) ∼ KTλ
−4

ξ−2 + q2
.

Since q ∼ λ−1, at the critical point the wavelength dependence of I(q) is λ−2

in comparison to λ−4 derived earlier.
Curie in 1895 made detailed investigations on the temperature dependence

of magnetic properties of materials and put forward ideas showing similarities
to properties of fluids. Earlier (1889), Hopkinson had introduced the term crit-
ical temperature (Tc) above which the materials lost the magnetic properties
abruptly. Taking pressure and specific volume analogous to magnetic field and
magnetization, Curie’s analogy led to similarities between the gaseous phase
and paramagnetic state at temperatures above Tc and the ferromagnetic phase
and liquid phase below Tc . Molecules of a magnetic material were themselves
modeled as tiny magnets and Langevin, employing statistical mechanics, de-
rived an equation of state ( relating magnetization (m), applied field (h) and
temperature (T) ) which was analogous to the ideal gas equation for fluids.
This theory, known as Langevin’s theory of paramagnetism, had explained the
relation χ = c/T between the magnetic susceptibility and temperature derived
experimentally by Curie. The magnet-fluid analogy led Weiss in 1907 to pos-
tulate an internal field similar to the internal pressure introduced by Van der
Waals for fluids. The internal field was to represent the effect of interaction
between a molecule with other molecules in the material. On incorporating
the internal field into Langevin’s magnetic equation of state, Weiss found the
existence of a critical temperature (known as Curie temperature). Above the
critical temperature, the material behaved as a paramagnet while for lower
temperature it acquired non-zero magnetization. The modified equation of
state also led to the now well known Curie-Weiss law χ = c/(T − Tc) for the
susceptibility.

With the use of x-ray diffraction techniques, ordered arrangement of atoms
in binary alloys such as that of Cu and Au was established in the early 1920s.
On increasing the temperature, destruction of atomic order accompanied by
an anomalous increase in specific heat of alloys was observed. In 1934, Bragg
and Williams introduced the concept of an order parameter s to characterize
the degree of atomic order in the alloys. Their statistical mechanical calcula-
tion for the temperature dependence of s, along the lines of Weiss theory of
ferromagnetism, led to an ‘equation of state’ which showed that s decreased
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continuously and approached zero at a critical temperature Tc . The work of
Bragg and Williams brought out the fact that short range forces between atoms
can compound together in a cooperative manner to establish long ranged cor-
relations.

Magnetization of a ferromagnetic material at zero field, density difference
between the gaseous and liquid phases at Pc and the order parameter in the
case of binary alloys vary in a continuous manner with respect to tempera-
ture across Tc, being zero above Tc and non-zero below Tc . In the current
terminology, these transitions are called continuous phase transitions. Thus
these transitions are qualitatively different from those involving a discontinu-
ous change in density in a fluid at a pressure different from Pc. A discontinuous
change in density implies a discontinuity in the first derivative of Gibb’s free
energy and hence discontinuous transitions are also said to be of first order.
Continuous transitions are accompanied by a divergence of specific heat across
Tc . Thus these transitions with a continuous first derivative of free energy
but a divergent second derivative are commonly known as second order phase
transitions.

During the early period, simple models retaining the essential aspects of a
many body system, which cooperatively interact near Tc, were proposed for
quantitative study of phase transitions. In 1925, Lenz suggested to his stu-
dent Ising a model consisting of classical spin variables ( representing magnetic
moments of atoms ) at the sites of a lattice to represent a magnetic material.
Every spin variable can point up or down and interact with its nearest neigh-
bors such that two parallel spins have a lower energy state in comparison to
two antiparallel spins. Ising solved the statistical mechanical problem in one
dimension, but found no phase transition. Thereafter, the model came to be
known as Ising model. Somewhat later (around 1936) Peierls gave arguments
to show that in two dimension, the model predicted a non-zero magnetization
at a finite temperature. A more realistic model wherein a three dimensional
spin vector occupied the sites of a lattice was proposed by Heisenberg in 1928.
These and other related models will be introduced in the first chapter.

Around 1937, Landau unified the theories of continuous phase transitions.
He generalized the concept of order parameter, introduced by Bragg and
Williams for binary alloys, to characterize all continuous phase transitions.
The density difference between the liquid and gaseous phases and magneti-
zation are the order parameters for the gas-liquid and magnetic transitions.
In the vicinity of Tc , Landau developed a Taylor expansion for Gibbs free
energy in terms of the order parameter. Employing changes in the symmetry
of the system across the transition temperature, the temperature dependence
of the coefficients in the free energy expansion was parameterized and then
minimization of free energy was shown to yield the appearance of order below
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Tc . Landau’s theory also brought to focus the importance of critical expo-
nents to characterize the divergence of thermodynamic quantities across Tc
. Within this theory, all continuous phase transitions are found to have the
same critical exponents. These aspects will be discussed in more detail in the
second chapter.

Middle Period (1944 - 1971)

The inadequacy of all the theoretical work on phase transitions in the early
period was exposed by the work of Onsager in 1944. He analytically solved
the two dimensional Ising model in zero external field and showed that at a
critical temperature Tc, the magnetic contribution to specific heat diverged
logarithmically. Mean field theories of Landau’s type predicted only a dis-
continuity in the specific heat for all spatial dimensions. The free energy was
shown to be non-analytic at Tc , thus making Landau’s expansion invalid.
The divergence of correlation length at Tc was found to be at variance with
the predictions of Ornstein-Zernike theory. Later (1949), Onsager also showed
that the temperature dependence of magnetization below Tc was different from
that predicted by mean field theories. The three dimensional Ising model is
not yet solved analytically. However, perturbation series expansions at high
and low temperatures together with asymptotic expansions employing Pade
approximations developed by Domb and others clearly established the inad-
equacy of mean field theories. It should be mentioned here that somewhat
later in the 70s, Kac, Uhlenbeck and others established the correctness of the
mean field theory results for systems interacting via very long range forces.
The mean field results did not accord with experiments since inter-molecular
forces are generally short ranged. From the results of calculations for different
type of lattices (cubic, face centered cubic, etc.) and accumulated experi-
mental data, it became clear that critical behaviour strongly depended on the
spatial dimension and the dimension of the spin variable but was insensitive
to the details of the system at small length scales.

In the 1960s, several workers ( Widom, Domb and Hunter, Patashinskii
and Pokrovskii, Fisher, Griffiths ) attempted to incorporate the experimental
results and ‘exact results’ on models into the mean field theory expressions.
This development led to what is today known as scaling theories which hy-
pothesized certain expressions for free energy and correlation functions. These
expressions which involved scaled variables like m/(T − Tc)β were analogous
to those predicted by mean field theories, however, the functional forms and
exponents (numbers like β) were determined from known results. Scaling
hypotheses predicted relations between exponents and certain universal func-
tional forms similar to the universal equation of state suggested by the Van
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der Waals equation. Tests of the predictions with exact and experimental
results indicated different universality classes, each class depending on the
spatial dimension and dimension of the spin variable. Kadanoff in an impor-
tant paper (1966) attempted a theoretical justification of scaling hypotheses.
He observed that near the critical temperature, the basic length scale of the
system is the correlation length which is much larger than other length scales
like inter-particle spacing, interaction range etc. He argued that from a given
theoretical description of the system, it is possible to construct an equivalent
coarse grained description such that the coarse graining scale is much smaller
than the correlation length. Employing the equivalence of the two descriptions
and invoking certain other assumptions, Kadanoff derived the scaling hypothe-
ses. Development of scaling theories and Kadanoff’s ideas are discussed in the
third chapter.

Renormalization Group Period ( After 1971 )

Physical phenomena observed in nature are characterized by a great diversity
of length scales. Matter at the molecular level shows features at a scale of the
order of 10−8 centimeter, but at the macroscopic level the scales involved can
vary from a fraction of a centimeter to several thousand kilometers. Almost
all theories of physics exploit the fact that for describing a class of phenom-
ena characterized by length scales in a certain range, details of the system
within the range can be ignored or suitably approximated. Near the phase
transition point, due to the co-operative interaction of molecules, chunks of
matter of all sizes exist and a fundamental theory should incorporate this as-
pect. K.G.Wilson showed that the renormalization group theory, originally
developed in the 1950s in connection with field theories of elementary parti-
cles, is an appropriate framework for understanding the universality and also
for detailed calculations in phase transition theory. He translated Kadanoff’s
coarse graining concept to the wave vector (or momentum) space and de-
veloped the idea, that two descriptions differing in the basic length scales
(but both smaller than the correlation length) are equivalent, into a symme-
try principle for critical phenomena. Thus by repeated application of coarse
graining of the system, features at successively larger length scales could be
incorporated in the formalism. Then, rather general considerations led to the
derivation of scaling hypotheses proposed in an adhoc manner earlier. Using
the Landau-Ginzburg model hamiltonian (explained in the second chapter) he
also obtained (approximate) values for critical exponents in good agreement
with experiments. Together with M.E.Fisher, Wilson also pioneered a pertur-
bation scheme (known as ε - expansion) in the parameter ε = 4 − d where d
is the spatial dimension of the system and showed that mean field results are
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exact for d ≥ 4. All these developments are discussed systematically in chap-
ters four to six. The usefulness of Kadanoff’s coarse graining concept in real
space to study discrete spin models was shown by Th.Niemeyer and J.M.J.
van Leeuwen (1974), Kadanoff(1975) and others. These methods known as
real space renormalization techniques are briefly introduced in chapter seven.

Like matter near the phase transition point, there are other systems where
length scales of all sizes are important. Percolation of fluids through a solid
matrix, turbulence in fluids, size and shape of polymer chains in solutions,
diffusion of particles through random structures, chaotic maps, etc. are some
examples. Renormalization group theory has been applied in these areas with
significant success during the last decade. A few of these applications are
discussed in the last chapter.
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Chapter 1

Basic Aspects

This chapter is devoted to the basic aspects of second order critical phe-
nomena. The important experimental facts are summarized first. Then, the
mathematical models are introduced, and the statistical theory is outlined.

1.1 Critical Phenomena

A whole lot of physics deals with the behaviour of macroscopic systems when
external conditions are varied. The basic aim of a theory is to provide an un-
derstanding of the behaviour, to classify the systems based on their behaviour,
and to explain the unifying features of their behaviour if any. A macroscopic
theory deals with quantities like mass density, energy density, magnetization,
current density, etc., which are refered to as mechanical variables. There are
also quantities like applied temperature, pressure, electric field, magnetic field,
etc., which are called applied fields. These fields characterize the environment
or reservoir with which the system is in contact. In most of the phenomena,
the mechanical variables are uniquely fixed by the applied fields.

There are certain cases where a mechanical variable is not completely fixed
by the applied fields. For example, at 100oC and atmospheric pressure, the
density of H2O has two values, one corresponding to the vapor phase and the
other corresponding to the liquid phase. In fact this is true for all points on
the curve in the P-T diagram (Figure 1.1) which terminates at (Pc, Tc) known
as the liquid-gas critical point. Another example is the ferromagnetic phase of
materials like Fe, Co, Ni, etc. In this case the magnetization vector m is not
fixed when the applied field h = 0. The paramagnetic phase where m = 0 for
h = 0 prevails for T > Tc, a critical value. The point (0, Tc), in Figure 1.2,
known as the magnetic critical point is similar to the liquid-gas critical point.

Phenomena observed near critical points are called critical phenomena.
Mechanical variables like density (ρ) and magnetization (m) which are not
uniquely fixed by the applied fields are called order parameters. There are

8
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Figure 1.1: P - T Phase Diagram for Gas-Liquid Transition.

other examples like the superfluid and superconducting critical points. In
these cases a macroscopic theory employs quantum amplitudes, which are
generally complex, as order parameters. Experimental observations show that
many of the critical phenomena have several common features.

1.1.1 Ferromagnetism

The source of magnetic moments of atoms of ferromagnetic materials is the
spin of electrons in incomplete atomic shells. For transition metals (Fe, Co,Ni)
the d and f shells are incomplete. The spins of electrons (in different atoms)
have a lower energy when they are parallel and the basic reason is the quan-
tum mechanical exchange effect. The crystal structural features sometimes
make all spins to be restricted to a certain crystal axis or to a crystal plane.
Thus there are uniaxial or planar ferromagnets in addition to isotropic fer-
romagnets. At T = 0, all spins are in the same direction even though the
direction is arbitrary. As T is increased, thermal agitation randomizes the
spin direction, but still a large fraction of the spins is in the same direction for
long time intervals. For T > Tc, the critical temperature, the net number of
spins in any direction is zero. However, for T slightly above Tc, there are large
spin patches (in comparison to lattice spacing) where alignment is achieved.
For T slightly below Tc, there are spin patches of macroscopic sizes as well.
It takes a long time for the short range exchange effect to turn around large
spin patches which exist near Tc. Thus relaxation near Tc is very slow. This
and similar other experimental observations point to the fact that many of
the features of ferromagnetism are due to the presence of large spin patches
near Tc.
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Figure 1.2: h - T Phase Diagram for Magnetic Transition.

1.1.2 Exponent β

When h = 0, magnetization is a decreasing function of T for T < Tc. The
two curves shown in Figure 1.3 are the two possible (non-unique) values of m
obtained for a uniaxial ferromagnet. It is natural to ask about the nature of
this function and the simplest function having the required shape is a parabola,

m2 ∼ Tc − T.

Then the temperature dependence of m is

|m| ∼ (Tc − T )1/2.

However, the observed nature of the curve is not a parabola. In fact one finds
that

|m| ∼ (Tc − T )β,

with β ≈ 0.35 and Tc ∼ 69.3ok for Y FeO3. Surprisingly, the same value of β
is found for many systems as if it is a universal number. Values of β for some
materials are given in Table 1.1. β is one of the several critical exponents
introduced below.

1.1.3 Liquid-Gas Critical Point

Historically, the first critical point to be discovered was in carbon dioxide.
Consider a sealed tube containing CO2 at an overall density of 0.5gm/cc at
T = 29oC. The corresponding pressure is 72 atmospheres. At this point,
shown as point a in Figure 1.1, there is clearly liquid and vapor. If T is raised
to 30oC (point b in the figure), the density of liquid and vapor comes closer.
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Figure 1.3: Magnetization - Temperature Curves.

Table 1.1: Exponent β

Material T (ok) β

Fe 1044.0 0.34± 0.02
Ni 631.6 0.33± 0.03
Y FeO3 69.3 0.35± 0.02
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At 31oC, one observes the phenomenon of critical opalescence. When CO2,
which is transparent to visible light, is illuminated, an orange tinge is found
if viewed from the forward direction and a bluish tinge is observed from a
normal direction. If T is raised by a small amount (point c in the figure),
opalescence disappears and the two phases, vapor and liquid, also disappear
leaving behind a homogeneous fluid. One can go from point-1 to point-2, in the
phase diagram (of Figure 1.1), along a path of continuous density change or
along a path with a discontinuous density change as the vapor pressure curve
is crossed. As one approaches the critical point along the vapor pressure curve,
liquid density (ρl) and vapor density (ρv) come closer as shown in Figure 1.4.
Again, the dependence of ρl − ρv on Tc − T is found to be

ρl − ρv ∼ (Tc − T )β.

Very accurate measurements show that β ∼ 0.32. More importantly, β is found
to be independent of the type of fluid. The same value (within experimental
error) is found for H2O, liquid metals, He3, He4, Xe etc. Thus once again
it appears that β is a universal number. Furthermore, the data on different
liquids when expressed in terms of scaled variables

t1 =
ρl − ρv
ρc

, t2 =
Tc − T
Tc

are found to fall on a universal curve within experimental error.

1.1.4 Binary Mixture

Another system which has been investigated is a mixture of two chemical
compounds A and B, which mix together at higher temperature but separate



Basic Aspects 13

T

C

Tc

Figure 1.5: Specific Heat Vs Temperature.

into two phases at lower temperature. If N1 and N2 are the concentrations of
compound A in the phases 1 and 2, near a critical value Tc, it is seen that

N1 −N2 ∼ (Tc − T )β.

For systems obtained by dissolving alkali metals (Na,Li, Ca) in NH3, β has
the same value quoted before.

1.1.5 Exponent α

The specific heat C of systems at the ferromagnetic critical point or the liquid-
gas critical point is found to diverge as the critical temperature is approached.
See Figure 1.5. The divergence is characterized in terms of critical exponents
α and α′ as

C ∼
{

(T − Tc)−α, T > Tc
(Tc − T )−α

′
, T < Tc.

For argon, α is found to be in the range of 1/8 to 1/9 and similar results are
found for other fluids. Further, α is 0.12±0.01 and 0.1±0.03 for the magnetic
materials Fe and Ni respectively.

1.1.6 Exponent γ

The zero field susceptibility (χ) of ferromagnetic materials diverges near Tc.
Data show that χ behaves as

χ ∼
{

(T − Tc)−γ T > Tc
(Tc − T )−γ

′
T < Tc.

,
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Figure 1.6: Magnetization Vs Applied Field.

and γ = γ′ ≈ 1.33±0.1 for Fe,Ni and Gd. χ measures the ease of magnetizing
a material and it should diverge at Tc because of spontaneous magnetization.
The analogous parameter for fluids is the isothermal compressibility

KT =
1

ρ
(
∂ρ

∂p
)T ,

and is found to become large near Tc. Typical values of γ defined as

KT ∼ (T − Tc)−γ,

are between 1.23 and 1.24 for several fluids.

1.1.7 Exponent δ

The variation of the order parameter on the critical isotherm is obtained by
fixing T = Tc and varying h (or P ) in the magnetic (or liquid-gas) case. For
small h one finds that

m ∼ h1/δ,

for T = Tc. See Figure 1.6. Values of the exponent δ range from 4.6 to 4.8 for
uniaxial to isotropic ferromagnets. For fluids, δ is defined as

(ρ− ρc) ∼ (P − Pc)1/δ,

and δ varies from 4.2 to 4.8.

1.1.8 Definition of Exponents

When a function f(x) behaves like xλ for small x, it is written as

f(x) ∼ xλ as x→ 0.
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Table 1.2: Exponents (Approximate)

n α γ δ β ν

1 0.11 1.235 4.8 0.32 0.63
2 0.00 1.315 4.7 0.34 −−
3 0.14 1.356 4.6 0.36 0.70

It means that

lim
x→0

ln(f(x))

ln(x)
= λ.

This definition does not require the specification of the constant of propor-
tionality as in f(x) = Axλ. Further, for f(x) = ln(x), λ = 0. It should be
noted that f(x) behaves like xλ only for small values of x, in fact, the general
form of f(x) would be as

f(x) = Axλ{1 + a−rx
−r + · · ·+ a1x+ a2x

2 + · · ·}.

1.1.9 Order Parameter Dimension

It was noted earlier that mechanical variables, which are not uniquely de-
fined by specific values of applied fields, are generally called order parameters.
For fluids the parameter of interest is ρl − ρv while for fluid mixtures it is
the difference in concentration N1 − N2. For superfluids, the parameter that
characterizes the transition is a macroscopic wave function

ψ = ψ1 + ıψ2,

and hence has two components in comparison to the single component in
earlier cases. For ferromagnets, the magnetization vector m is the order pa-
rameter. Uniaxial magnets with an easy axis of magnetization are described
by a single component, n = 1, order parameter while planar and isotropic
magnets require n = 2 and n = 3 respectively. Thus there are situations
where the order parameter has many components. The various exponents in-
troduced earlier are found to have a weak dependence on n. See Table 1.2.

1.1.10 Fluctuation of Order Parameter

In general, the order parameter is denoted by s. If the details of the spin ar-
rangement in a ferromagnet are probed, it will be seen that the spin alignment
varies in space and time. At a specific time, one can see a spin configuration.
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It is useful to define a quantity called spin density s(x) so that s(x)dx is the
total spin in dx around the point x. For simplicity, the case of a single compo-
nent order parameter is considered here. Since thermal agitation is the main
agency which disturbs the spin alignment, the spin configuration is decided
by statistical laws. The net magnetization measured is the statistical average
of s(x), i.e. m =< s(x) >. For every spin configuration, there is an associ-
ated energy E and the relative probability of occurrence of the configuration
is given by the Boltzmann factor exp(−E/kBT ), where kB is the Boltzmann
constant. The spin configuration can be probed by scattering experiments
using neutrons since neutrons have magnetic moments. The scattering cross-
section γfi (associated with a momentum change from pi to pf ) depends on
the local spin density. In the Born approximation one has

γfi ∼
〈∣∣∣ ∫
V

exp(−ıpf · x)s(x) exp(ıpi · x)dx
∣∣∣2〉,

where < · · · > denotes averaging over various spin configurations with the
corresponding probabilities. With periodic boundary conditions over the edges
of the material of volume V , the Fourier modes

φk =
1√
V

exp(ık · x),

form a complete set of functions. Here, the wave vector component ki = 2πn/L
where n is an integer and V = L3. Then s(x) can be expanded as

s(x) =
1√
V

∑
k

exp(ık · x)sk,

sk =
1√
V

∫
V

exp(−ık · x)s(x)dx.

Using the orthogonality of the Fourier modes, one easily gets

γfi ∼ < |sk|2 > V,

k = pf − pi.

Scattering experiments show that γfi diverges (Figure 1.7) for k ≈ 0 (i.e. for
forward scattering) when T = Tc. The divergence can be expressed as

γfi ∼ V k−2+η.

and the exponent η takes values around 0.07. The scattering cross-section can
be related to the Fourier transform of the correlation function of spin density.
Now, s(x)− < s > is the deviation of spin density from its mean value and
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hence < [s(x)− < s >][s(0)− < s >] > is the spatial correlation function of
spin density. Its Fourier transform G(k) is

G(k) =
∫
V

dx exp(−ık · x) < [s(x)− < s >][s(0)− < s >] >

=
∫
V

d(x− x1) exp{−ık · (x− x1)}
〈
[s(x)− < s >][s(x1)− < s >]

〉
.

The last step follows since any point x1 can be taken as the origin. Since the
r.h.s is independent of x1, G(k) can be written as

G(k) =
1

V

∫
V

dx1

∫
V

dx exp{−ık · (x− x1)}
〈[
s(x)− < s >

][
(s(x1)− < s >

]〉
.

Now, note that the magnetization m =< s(x) > is independent of x for a
homogeneous material. Then, substituting for s(x) and s(x1) in terms of
Fourier modes, one easily finds

G(k) =< |sk|2 > .

Thus γfi measures the Fourier transform G(k) of the correlation function. The
divergence of γfi for small k shows that

G(0) =
∫
V

dx
〈
[s(x)− < s >][s(0)− < s >]

〉
,

diverges as T → Tc. Since s(x) at all x are bounded quantities, the divergence
should be attributed to the presence of very large regions where spins are
correlated. Thus one is led to the conclusion that there are spin patches of
large sizes in the system near Tc.
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1.1.11 Correlation Length

The exchange interaction which aligns the spins is a short range interaction.
Thermal agitation which randomizes the spin alignment is uncorrelated. Thus
at high temperature, where the thermal agitation is more predominant, one
expects the correlation function

G(x) =< [s(x)− < s >][s(0)− < s >] >,

to fall off rapidly. At T close to Tc, the presence of large spin patches indicates
that spins at large distances are correlated. As will become evident later,
rather general models show that the correlation function falls off as

G(x) ∼ 1

|x|
exp(−|x|/ξ),

for large values of |x| (in units of inter atomic spacing). The parameter ξ
yields the typical length scale over which spins are correlated and is called
the correlation length. For a crude picture, one may take ξ as the size of the
largest spin patch. For T � Tc, ξ is of the order of few lattice spacing. The
phenomenon of critical opalescence or diverging scattering cross-section shows
that ξ diverges as Tc is approached. The variation of ξ w.r.t temperature can
be described as

ξ ∼ (T − Tc)−ν ,

where ν is a new exponent and its value ranges from 0.63 to 0.7 as n goes from
1 to 3. The divergence of ξ, or the presence of spin patches of large size near
Tc, is the main clue which provides an understanding of critical phenomena.

1.2 Mathematical Models

In this section, some mathematical models used to study critical phenomena
are introduced. The occurrence of large correlation length near the critical
point shows that the problem of critical behaviour is a many body problem.
Therefore, very simple models may be studied to obtain a conceptual under-
standing of the phenomena. The detailed quantum mechanical solution of a
many body problem, even if possible, can not provide such an understand-
ing. In the following sections, simple models with particular emphasis on the
magnetic critical phenomena are discussed.

1.2.1 Ising model

In the Ising model, the details of atomic structure and crystal structure are
ignored and one imagines space to be divided into cells of certain volume v
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and each cell is represented by a lattice point. To each lattice point, a spin
variable si, which can take values ±1, is assigned and then an exchange type
interaction between the spins is postulated. If i, j, etc. denote the lattice
points, the total number being N , the hamiltonian of the system is

H({si}) = −h
∑
i

si − J
∑
<i,j>

sisj,

where h is the external field and J (> 0) is the exchange interaction parameter.
The first term accounts for interaction of spins with the external field. The
second term yields a negative contribution from a pair of parallel spins and
a positive contribution from anti-parallel spins. The symbol

∑
<i,j> indicates

that summation is over nearest neighbour pairs. The total number of terms
in the sum is N znn where znn is the number of nearest neighbours (= 2 in
1−D, 4 in 2−D and 6 in 3−D). The lattice can be of several types, square
or triangular in 2 − D, simple cubic in 3 − D, etc. Thus in a square lattice
in d-dimension, the total number of spin variables are N = Ld where L is the
side length of the lattice in units of lattice spacing. The statistical mechanical
properties of the model can be expressed in terms of the canonical partition
function, which is defined as

ZN(T, h) =
∑
config

exp
[
− H

kBT

]
.

The symbol
∑
config indicates summation over all the 2N spin configurations.

1.2.2 Lattice Gas Model

The lattice gas model is a simple model to characterize a fluid and can be
formulated exactly like the Ising model. First of all, one assumes that the
position of atoms in a fluid can be only at the sites of a lattice. A number
ni is assigned to the ith lattice site, and it can take values 1 or 0 depending
on whether the site is occupied or not. Thus, at most one atom can occupy a
site. Generally, there is a repulsive interaction when two atoms approach very
close to each other and this fact is modeled by the restriction that at most
one atom can occupy a lattice site. Assuming a nearest neighbour (attractive)
interaction energy −ε, the total energy of a configuration having N ′ particles
can be expressed as

H(N ′) = −εN ′p = −ε
∑
<i,j>

ninj,

where N ′p is the number of neighbour pairs of the configuration. The kinetic
energy of the particles is not considered since it contributes only the ideal gas
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terms (to the thermodynamic quantities), which are unimportant in discussing
phase changes. The total number of particles in the configuration is

N ′ =
∑
i

ni.

The canonical partition function is then given by

ZN ′ =
∑

config − N ′
exp

[
− H(N ′)

kBT

]
,

where
∑
config − N ′ represents summation over all the distinct configurations

of N ′ particles on N lattice points. Note that this number is N !/(N−N ′)!N ′!.
The lattice gas model can be made identical to the Ising model by considering
the grand partition function for N particles,

ZG =
∑
N ′
ZN ′ exp

[µN ′
kBT

]
=

∑
N ′

∑
config − N ′

exp
[
− H(N ′)− µN ′)

kBT

]
,

where µ is the chemical potential. Substituting for H(N ′) and N ′ and observ-
ing that ∑

N ′

N !

(N −N ′)!N ′!
= 2N ,

ZG can be written as

ZG =
∑
config

exp
[
− He

kBT

]
.

Here, the effective hamiltonian He is defined as

He = −ε
∑
<i,j>

ninj − µ
∑
i

ni,

and
∑
config indicates summation over all the 2N possible sets of {ni} values.

Thus the calculation of ZG for the lattice gas model is identical to that of ZN
for the Ising model. For establishing exact equivalence, a spin variable si can
be introduced as

ni =
1

2
(si + 1).

Then He can be written as a Ising hamiltonian. The coupling constant and
the ‘field strength’ of the equivalent hamiltonian are

Jeff =
ε

4

heff =
ε

4
znn −

µ

2
.



Basic Aspects 21

The lattice gas model can also be used to describe the binary mixture. A
usual convention is that the ith site is occupied by an A-atom if ni = 1 and
by a B-atom if ni = 0. Further, let -εa, − εb and -εab be the interaction
energies between the A − A,B − B and A − B pairs. Then the total energy
of a configuration having Na A-atoms and N −Na B-atoms is given by

H(Na) = −εa
∑
<i,j>

ninj − εb
∑
<i,j>

(1− ni)(1− nj)

− εab
∑
<i,j>

ni(1− nj)− εab
∑
<i,j>

(1− ni)nj.

Total number of A-atoms in the configuration is

Na =
∑
i

ni.

Note that the hamiltonian for the mixture can, thus, be expressed in terms
of the occupation number of A-atoms alone. Further, it can be easily verified
that the grand partition function of the system can be expressed in terms of
an effective lattice gas hamiltonian with the parameters

ε = εa + εb − 2εab

µ = µa + 2znn(εab − εb).

Having established the equivalence of the lattice gas model (for a simple fluid
or a binary mixture) with the Ising model, it is now appropriate to consider
modifications of the latter.

1.2.3 n - Vector Spin Models

Earlier it was mentioned that for some examples of critical phenomena, the
order parameter should have several components. Thus for planar ferromag-
nets, each spin variable is a two dimensional vector si. The component s1

i (or
s2
i ) varies continuously between −1 to +1. This lattice model, with a two-

component (n = 2) order parameter, is generally called the X − Y model. In
the Heisenberg model, each spin variable is a three dimensional vector,

si = (s1
i , s

2
i , s

3
i ),

and hence n = 3. More generally, one can imagine an n-vector model where

si = (s1
i , s

2
i , · · · , sni ).

It may be noted that the dimension of the lattice on which the spins are
erected can be 1, 2, 3 or in general d. The hamiltonian is then given by

H({si}) = −h
∑
i

s1
i − J

∑
<i,j>

si · sj,
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where it is assumed that the external field is along the direction of the com-
ponent s1

i . The partition function is then to be generalized as a multiple
integral

ZN =
∫ ∫

ds1 · · · dsN exp
[
− H

kBT

]
.

1.2.4 Continuous Spin Models

In these models, the spin variable is regarded as an n-component vector, how-
ever, each component is allowed to take values in the range (−∞,∞). Math-
ematical simplicity is the primary reason for allowing such a range for the
components. However, due to the enlargement of the range of components,
it is necessary to introduce a certain weight function for the components sµi .
Otherwise, each sµi can take the value +∞ and then the partition function
will diverge. The standard Ising model can be regarded as a special case of
this continuous spin model by properly adjusting the weight function. The
hamiltonian of the continuous spin model is

H({si}) = −h
∑
i

s1
i − J

∑
<i,j>

si · sj,−∞ < sµi <∞.

Therefore, with n=1, the Ising partition function can be written as

ZN =
∫ ∫

ds1 · · · dsN exp
[
− H

kBT

] N∏
i=1

{δ(si + 1) + δ(si − 1)}.

Thus, with a weight function W (si) defined as

exp[−W (si)] = δ(si + 1) + δ(si − 1),

the Ising partition function can be written as

ZN =
∫ ∫

ds1 · · · dsN exp
[
− H

kBT
−
∑
i

W (si)
]
.

This observation suggests certain simpler choices of weight functions. A model
due to Kac (called the Gaussian model) uses

exp[−W (si)] = exp(−γ|si|2), γ > 0.

Since ZN reduces to a multiple Gaussian integral, the model can be solved
exactly. However, the Gaussian model does not have a low temperature be-
haviour since for T < Tc, some critical value, the partition function diverges.
A model (called the s4 model), which is free from this difficulty, uses the
weight function

exp[−W (si)] = exp(−γ|si|2 − u|si|4), γ < 0, u > 0.
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The quartic term in this weight function is to ensure the convergence of the
integrals in the partition function. Defining an effective hamiltonian

He({si}) = H({si}) + kBT
∑
i

W (si),

the partition function can be expressed as

ZN =
∫ ∫

ds1 · · · dsN exp
[
− He

kBT

]
.

The effective hamiltonian can be rewritten in a slightly different form. Note
that

∑
<i,j>

si · sj =
1

2

∑
i

′∑
j

s2
i + s2

j − (si − sj)
2,

= −1

2

∑
i

′∑
j

(si − sj)
2 + znn

∑
i

s2
i ,

where
∑′
j denotes summation over the nearest neighbours of i and znn is the

number of nearest neighbours of any lattice point. Then He can be written as

He = a2

∑
i

s2
i + a4

∑
i

s4
i − h

∑
i

s1
i −

J

2

∑
i

′∑
j

(si − sj)
2,

a2 = γkBT − znnJ = a′2(T − Tc), a′2 = γkB,

Tc =
znnJ

γkB
, a4 = ukBT ≈ a constant,

for T ≈ Tc. The weight functions exp[−W (s)] for the various models (Fig-
ure 1.8) show that, by choosing the values of the parameters γ and u (γ < 0
and u > 0), it is possible to make the s4 model resemble the Ising model. As
shown in next section, the s4 model can be derived from the Ising model in a
more systematic way.

1.2.5 Kac - Hubbard - Stratonovich Transformation

Consider a general Ising hamiltonian

H({si}) = −1

2

∑
i

∑
j

Jijsisj.

Here, couplings between every pair of spins are included, however, it is as-
sumed that h = 0 and n = 1. The partition function is

ZN =
∑
config

exp
[1
2

∑
i

∑
j

Kijsisj
]
,
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s

exp(−W )

6 6

γ > 0

γ < 0 Ising

Figure 1.8: Weight Function for Various Models.

where Kij = Jij/kBT is non-negative and symmetric in i and j . To avoid any
self interaction, it is required to put Kii = 0. Now,

1

2

∑
i

∑
j

Kijsisj = −N
2
p0 +

1

2

∑
i

∑
j

Pijsisj,

where Pij = p0δij + Kij. By choosing p0, the matrix P can be made positive
definite. Hence ZN becomes

ZN = exp
(
− N

2
p0

) ∑
config

exp
[1
2

(s,Ps)
]
,

where s = (s1, s2, · · · sN). If Q is a positive definite matrix, there is an integral
representation

(2π)N/2√
detQ

=

∞∫
−∞

N∏
i=1

dyi exp
[
− 1

2
(y,Qy)

]
.

Now, introduce the vectors x and s via the transformation y = x + Q−1s so
that

(y,Qy) = (x,Qx) + 2(x, s) + (s,Q−1s).

Then a more general result is

(2π)N/2√
detQ

=

∞∫
−∞

N∏
i=1

dxi exp
[
− 1

2
(x,Qx)− (x, s)− 1

2
(s,Q−1s)

]
.

Now, P is positive definite, so P−1 also is positive definite. Putting Q = P−1

one gets
√
detP

(2π)−N/2
=

∞∫
−∞

N∏
i=1

dxi exp
[
− 1

2
(x,P−1x)− (x, s)− 1

2
(s,Ps)

]
.
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This equation yields

exp
[1
2

(s,Ps)
]

=
(2π)−N/2√
detP

∞∫
−∞

N∏
i=1

dxi exp
[
− 1

2
(x,P−1x)− (x, s)

]
,

Substituting in the expression for ZN , one finds that the configuration sum
can be carried out easily. Since∑

config

exp[−xisi] = 2 cosh(xi),

the partition function becomes

ZN = c

∞∫
−∞

N∏
i=1

dxi exp
[
− 1

2
(x,P−1x) +

∑
i

ln[2 cosh(si)]
]
,

where c is defined as

c =
(2π)−N/2√
detP

exp(−Np0/2).

Separating the diagonal part from the first term, ZN can be expressed as

ZN = c

∞∫
−∞

N∏
i=1

dxi exp
[
− 1

2

∑
i

′∑
j

P−1
ij xixj −

∑
i

W (xi)
]
,

where W (xi) is given by

W (xi) =
1

2
P−1
ii x

2
i − ln[2 cosh(xi)].

If P−1
ij is interpreted as the coupling strength, ZN is found to be analogous to

the partition function of the continuous spin model. Expanding around xi = 0
one finds

W (xi) = γix
2
i + ux4

i +O(x6
i ),

γi =
1

2
(P−1

ii − 1), u =
5

24
,

which has the same form of the weight function of the continuous spin model.
This mathematical equivalence between the two models allows one to conclude
that the exponents obtained from them will be the same.

1.2.6 Landau - Ginzburg Model

While discussing the continuous spin model, an effective hamiltonian

He = a2

∑
i

s2
i + a4

∑
i

s4
i − h

∑
i

s1
i −

J

2

∑
i

′∑
j

(si − sj)
2,
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was introduced. This is usually known as the (discrete) Landau-Ginzburg
hamiltonian. A more physical derivation of the same is developed below. This
derivation also yields a physical interpretation of the effective hamiltonian.
Restricting to the case of one component spin variable, the Ising hamiltonian
with general coupling constants is

H({si}) = −h
∑
i

si −
1

2

∑
i

∑
j

Jijsisj.

Now, imagine the lattice to be divided into cells of volume v. The volume is
large enough so that it contains a large number (M) of lattice points, however,
its linear dimension is assumed to be small compared to the correlation length.
Let s′c be the average of the spin values over the volume v, i.e.

s′c =
1

M

∑
i∈c

si.

Thus a number s′c can be assigned to every lattice cell. Since M is large, s′c
would vary as a continuous variable in the range [−1, 1]. The expression for
H may be simplified by assuming that si in the cth cell can be approximated
as s′c. Then one finds

H ≈ −hM
∑
c

s′c −
1

2

∑
c

∑
i∈c

∑
j∈c

Jijs
′
c

2 +M
∑
c

H int
c ,

where H int
c represents the coupling energy (per spin) of the cth cell with other

cells. Further, if ∑
j∈c

Jij = J0,

is taken to be independent of c, that is, if the lattice has translation symmetry,
then H can be written as

H ≈ −hM
∑
c

s′c −
1

2
J0M

∑
c

s′c
2 +M

∑
c

H int
c .

The values of s′c are as such unknown quantities. If there are M+ up spins
and M− down spins in the cth cell, then

s′c =
1

M
(M+ −M−),

M = M+ +M−.

That is,

M+ =
M

2
(1 + s′c),

M− =
M

2
(1− s′c).
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The entropy of the M spins is then given by S = kB ln(W ), where

W =
M !

M+! M−!
,

is the total number of configurations. Now, using Sterling’s approximation

ln(N !) ≈ N ln(N)−N,

one gets

ln(W ) = ln(M !)− ln(M+!)− ln(M−!),

= M ln(M)−M+ ln(M+)−M− ln(M−),

= −M
2

[
(1 + s′c) ln

(1 + s′c
2

)
+ (1− s′c) ln

(1− s′c
2

)]
,

where M+ and M− have been expressed in terms of s′c. Taylor expansion
around s′c = 0 leads to

ln(W ) = −M
[
− ln(2) +

1

2
s′c

2 +
1

12
s′c

4 + · · ·
]
.

Therefore the free energy defined as

F = E − TS = H − TkB
∑
c

ln(W ),

can be expressed as

F =
∑
c

M [
1

2
(kBT − J0)s

′
c

2 +
1

12
kBTs

′
c

4

− hs′c − kBT ln(2)] +M
∑
c

H int
c .

Since M spins are contained in every cell of volume v, the free energy can also
be written as

F =
∑
c

v{a0 + a2s
′
c

2 + a4s
′
c

4 − hs′c}+MH int
c ,

a0 = − 1

v0

kBT ln(2),

a2 =
1

2v0

(kBT − J0),

a4 =
1

12v0

kBT.

where v0 is the volume associated per spin. The parameters a0, a2 and a4

are functions of temperature. The term H int
c representing the interaction

between the cells must also be expressed in terms of s′c. If neighbouring cells
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have same average spin values, then this term should be zero. Further, the
interaction between the cells should yield a positive contribution to the free
energy. Therefore, a term proportional to (s′c− s′c′)2 may be taken as a lowest
order approximation to the coupling energy between the neighbouring cells at
c and c′. Thus the free energy is approximated as

F =
∑
c

v
[
a0 + a2s

′
c

2 + a4s
′
c

4 − hs′c +
C

b2

′∑
c′

(s′c − s′c′)2
]
,

where C/b2 (> 0) is a phenomenological parameter and
∑′
c′ indicates sum-

mation over the neighbours c′. The expression for F is same as that for the
effective energy derived earlier. However, the above derivation uses coarse
graining of the system over the linear size of the cell. Thus the effective en-
ergy of the continuous spin model is same as the free energy of the coarse
grained system. If b is taken as the linear size of the cells, and since s′c is
expected to vary slowly between the cells, it is possible to go over to a con-
tinuous description where s′c is treated as a continuous function of position.
Then F becomes a functional of s′(x),

F [s′] =
∫
V

{a0 + a2s
′ 2(x) + a4s

′ 4(x)− hs′(x) + C[∇s′(x)]2}dx.

This expression for F is usually known as the Landau-Ginzburg free energy
functional. Even though s′(x) is treated as a continuous function of position,
it does not contain variations on a scale smaller than the cell size b. But it can
describe slow variations of spin configuration over scales larger than b. Higher
order terms in ∇s′(x) are neglected since the variation is assumed to be slow.
F [s′] can be generalized to the case of an n-component order parameter by
writing

s′ 2 = s′ · s′ =
n∑
i

s′i
2,

s′ 4 =
[
s′ 2

]2
[
∇s′

]
2 =

d∑
α

n∑
i

[ ∂s′i
∂xα

]2
,

where α = 1, 2, · · · d and d is the spatial dimension. In the continuum model,
the subscript i denotes the spin component. However, in the lattice model, si
denotes the spin variable at the ith lattice site.

It is now important to see how to connect the free energy with the cal-
culation of the partition function. Let H ′[s′], where s′ is the coarse grained
order parameter, be the hamiltonian that gives the free energy of the Landau-
Ginzburg model . Different configurations of s can lead to the same coarse
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grained s′. Let W be the number of microscopic configurations for a specified
s′ in the volume v over which coarse graining has been done. Then Z, for
n=1, can be written as

Z =
∫ ∫ ∏

c

ds′c exp
[
− H ′[s′]

kBT
]W.

Now, kB ln(W ) = S where S is the entropy of the spin variables in v and
hence W = exp(S/kB). Therefore

Z =
∫ ∫ ∏

c

ds′c exp
[
− H ′[s′]

kBT
+

TS

kBT

]
,

=
∫ ∫ ∏

c

ds′c exp
[
− F [s′]

kBT

]
.

Thus, integration over all possible variations of s′, variations being over a scale
greater than b, yields the total partition function.

1.3 Statistical Theory

Some general results of statistical mechanics are summarized in this section.
In the Ising and n-vector models, there are a total of nLd (n=number of spin
components, d=spatial dimension) spin variables, if the linear size of the lattice
is L. This is also true for the Landau-Ginzburg (L-G) model in the discrete
version. According to statistical mechanics, the joint probability distribution
P of these variables is

P =
1

Z
exp

[
− H[s]

kBT

]
.

In what follows, the Boltzmann constant is taken as unity. Further, s appear-
ing in the L-G model free energy will be the coarse grained order parameter,
the symbol ′ over s will be omitted. The free energy of the L-G model will
also be called a hamiltonian. It should be noted that the hamiltonian from
spin is only a part of the total hamiltonian of the system. The coupling of the
spin with other modes of motion, such as lattice vibrations, and the macro-
scopic size of the system are the essential reasons necessitating a statistical
treatment. This coupling, in fact, introduces thermal noise in the dynamics
of spin variables. At thermal equilibrium, the probability distribution of the
spin variables is given by the well known Boltzmann distribution. The nor-
malization factor Z of the distribution (usually called the partition function)
is given by

Z =
∫ ∏

µ x

dsµx exp
[
− H[s]

T

]
,
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where the integral denotes the usual integral for continuous spin models and
summation for discrete spin models. The notation sµx denotes the µth spin
component at position vector x. The free energy density F of the system is
given by

Z = exp
[
− FV

T

]
, V = Ld.

Thus F is a function of T, h and other parameters (like coupling parameter
J) in H. The entropy (S), magnetization (m) and specific heat (C) are given
by

S = −∂F
∂T

,m = −∂F
∂h

,

C = T
∂S

∂T
= −T ∂

2F

∂T 2
.

The first and last are usual thermodynamic relations. The second relation can
be derived easily. Writing

H = H0 − h
∑
x

s1
x,

since field is in direction 1, one gets

Z =
∫ ∏

µ x

dsµx exp
[
− 1

T
H0[s] +

h

T

∑
x

s1
x

]
,

Differentiation w.r.t h yields

∂Z

∂h
=

1

T

∫ ∏
µ x

dsµx
∑
x

s1
x exp

[
− 1

T
H[s]

]
.

Hence
T

Z

∂Z

∂h
=<

∑
x

s1
x >

is the total magnetization along direction 1. But then

F = − T

Ld
ln(Z),

∂F

∂h
= − T

Ld
1

Z

∂Z

∂h
.

Hence −∂F/∂h is same as magnetization. Now

χ =
∂m

∂h
= −(

∂2F

∂h2
)T ,

where
∂2F

∂h2
= − T

Ld

[
− 1

Z2
(
∂Z

∂h
)2 +

1

Z

∂2Z

∂h2

]
.
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But the second derivative of Z is

∂2Z

∂h2
=

1

T 2

∫ ∏
µx

dsµx(
∑
x

s1
x

∑
x′
s1
x′) exp

[
− H[s]

T

]
.

Therefore

T 2

Z

∂2Z

∂h2
=
∑
x

∑
x′
< s1

xs
1
x′ > = Ld

∑
x

< s1
xs

1
0 > .

The last step follows from the translation symmetry of the system. Now, note
that

T

Z

∂Z

∂h
=
∑
x

< s1
x > = Ld < s1

0 > .

Hence one gets (T
Z

∂Z

∂h

)2
= LdLd < s1

0 >
2 = Ld

∑
x

< s1
x >

2 .

Then χ can be expressed as

χ =
1

T

∑
x

< s1
xs

1
0 > −

∑
x

< s1
x >

2 .

In the continuum model, χ can be written as

χ =
1

T

∫
dx{< s1(x)s1(0) > − < s1(x) >2} =

1

T
G(0).

Thus χ is related to the order parameter fluctuation and its divergence is
essentially due to the appearance of large spin patches neat Tc. In a similar
way, the specific heat is related to fluctuations in the internal energy. The
definition of F yields

∂2F

∂T 2
= − 2

ZLd
∂Z

∂T
+

T

Z2Ld
(
∂Z

∂T
)2 − T

ZLd
∂2Z

∂T 2
.

Using the derivatives of Z w.r.t T

∂Z

∂T
=

1

T 2

∫ ∏
µx

dsµxH[s] exp
[
− H[s]

T

]
,

∂2Z

∂T 2
=

∫ ∏
µx

dsµx{−
2H

T 3
+
H2

T 4
} exp

[
− H[s]

T

]
,

one finds that

1

Z

∂Z

∂T
=

1

T 2
< H >,

1

Z

∂2Z

∂T 2
= − 2

T 3
< H > +

1

T 4
< H2 > .
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Table 1.3: Exponents for 2-D Ising Model

β γ = γ′ α = α′ δ ν = ν ′ η

1/8 7/4 0 15 1 1/4

Therefore C can be expressed as

C = −T ∂
2F

∂T 2
=

1

LdT 2
(< H2 > − < H >2).

Thus specific heat is related to energy fluctuations. Near Tc, energy absorption
occurs in large amounts due to complete flipping of large spin patches and this
leads to large specific heat.

1.4 Summary of Exact Calculations

Having described some of the models and the method of calculations, it is
appropriate to consider some results of exact calculations. However, the details
of calculation are omitted.

(i) The 1-D (d = 1) Ising model (as well as n-vector model) can be solved
exactly. It is found that there is no spontaneous magnetization at any finite
temperature. Spontaneous magnetization appears at T = 0 and all thermo-
dynamic quantities diverge exponentially as T → 0. For example,

χ ∼ xγ, x = exp(−4J/kBT ), γ =
1

2
.

When long range interaction between spins is introduced, that is,

J(|y − z|) ∼ |y − z|−(2+ε), ε < 0,

one finds spontaneous magnetization at finite temperature, however, the ex-
ponents are different from those for short range interaction.

(ii) The 2-D (d = 2) Ising model (n = 1) is exactly solvable (the Onsager
solution). With short range interaction, one finds spontaneous magnetization
and divergence of thermodynamic quantities as Tc is approached. The critical
exponents obtained are given in Table 1.3. Note that the specific heat expo-
nent is 0 and hence the divergence is logarithmic. Another important finding
is that the same exponents are obtained for all types (triangular, rectangular,
hexagonal etc.) of lattices in 2−D.

(iii) In 3-D (d = 3), the Ising model (n = 1) has not been solved exactly.
However, very accurate estimates of exponents are available from the high
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Table 1.4: Exponents for 3-D Ising Model

β γ α δ ν

0.328± 0.008 1.239± 0.002 0.105± 0.01 5.0± 0.05 0.632± 0.002

temperature series expansion method. They are given in Table 1.4. The
universal aspects of critical exponents in 3−D are also well established.

(iv) The Gaussian model is exactly solvable. Since it does not have a low
temperature behaviour, the exponent β is unspecified. Others are γ = 1,
α = (4− d)/2 for d ≤ 4 and α = 0 for d > 4, δ = 3, ν = 1/2 and η = 0. These
results show that critical exponents depend strongly on the spatial dimension.
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Chapter 2

Landau’s Theory and Gaussian
Fluctuations

In this chapter, the partition function and the exponents, which characterize
the divergence of thermodynamic quantities, are calculated using a linearised
version of the Landau-Ginzburg (L-G) energy functional. The partition func-
tion in the L-G model can be written as a functional integral

Z =
∫
· · ·

∫ ∏
i

Dsi(x) exp
[
− H[s]

T

]
.

Recall that si(x) is the ith component of the order parameter field. The
functional integral is a notation which indicates that all the possible variations
of the order parameter field have to be accounted in calculating the partition
function. In the continuum model, the hamiltonian H[s] was obtained as

H[s] =
∫
V

{a0 + a2s
2(x) + a4s

4(x)− hs1(x) + c[∇s(x)]2}dx,

where
a0 = −kBT ln(2), a2 = a′2(T − Tc), a4 = ukBT,

and c is a phenomenological parameter characterizing the spatial variation of
s. Since H/T (kB = 1) appears in the Boltzmann factor, it is appropriate to
write

H[s]

T
=
∫
V

[
a∗0 + a∗2s

2(x) + a∗4s
4(x)− h∗s1(x) + c∗(∇s(x))2

]
dx,

where a∗j = aj/T, h
∗ = h/T, and c∗ = c/T . Then, note that

a∗2 =
a′2
Tc

(T − Tc) = a′2
∗(T − Tc),

34
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and all the other parameters in H[s]/T can be approximated as constants
near Tc. This approximation does not affect the values of exponents since
they are defined in the limit T approaching Tc. Hereafter, the symbol ∗ on
the parameters in H[s]/T will be omitted.

The spatial variation of si(x) does not contain length scales below a cut-
off value b, which characterizes the coarse graining length. Thus a Fourier
expansion of si(x) should be written as

si(x) =
1

Ld/2
∑
k≤Λ

exp(ık · x)sik, 1 ≤ i ≤ n,

where Λ = 2π/b is the cut-off wave number. The Fourier component sik is
given by

sik =
1

Ld/2

∫
exp(−ık · x)si(x)dx, ≤ i ≤ n.

The orthogonality of the Fourier modes yields

H[s]

T
= a0L

d +
∑
i

∑
k≤Λ

(a2 + ck2)siksi −k −
h

Ld/2
si 0

+
a4

Ld
∑
ij

∑
k,k′,k′′≤Λ

siksik′sjk′′sj −k−k′−k′′ .

Then, the probability distribution of the Fourier amplitudes is

P ({sik}) =
1

Z
exp

[
− H[s]

T

]
.

2.1 Landau’s Theory

In Landau’s theory, the spin distribution is obtained by minimizing H[s] which
amounts to maximizing P [s]. Thus one deals with the most probable spin
distribution in the system. It can be easily seen that the most probable
distribution must be spatially uniform. To show this, let s(x) be written
as

s(x) = s′′ + s′(x),

where s′ is spatially constant. Such a separation, with the additional condition
that

∫
s′dx = 0, is always possible. With this substitution, the energy density

becomes

Hd[s] = a0 + a2s
2 + a4s

4 − hs1 + c(∇s)2

= [a0 + a2s
′′ 2 + a4s

′ 4 − hs′′1] + [2a2s
′′ · s′ + 4a4s

′′ 2(s′′ · s′)− hs′′1]

+[a2s
′ 2 + 2a4s

′′ 2s′ 2 + 4a4(s′′ · s′)2 + 4a4s
′ 2(s′′ · s′) + a4s

′ 4 + c(∇s′)2].
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The volume integral of the second square bracket is zero. The 3rd, 4th and 5th

terms in the last square bracket can be combined together to yield

H[s]

T
=
H[s′′]

T
+
∫ [

(a2 + 2a4s
′′ 2)s′ 2 + a4(s′ 2 + 2s′′ · s′)2 + c(∇s′)2

]
dx.

The integral term, which vanishes when s′ = 0, definitely gives a positive
contribution if w = (a2 + 2a4s

′′ 2) > 0. Now, w ≥ 0 if a2 ≥ 0, however, as
shown below, s′′ can be chosen such that w ≥ 0 even when a2 < 0. Therefore,
the most probable distribution should be spatially constant. Now, minimizing
H[s′′] one gets

2s′′i (a2 + 2a4s
′′ 2) = hδi1, 1 ≤ i ≤ n.

When h = 0, the solutions are

s′′ = 0, |s′′| =
√
−a2

2a4

.

From the nature of H[s′′] (Figure 2.1), one notes that the solution s′′ = 0
corresponds to the case a2 ≥ 0 and the other solution is for a2 < 0. One also
finds that for a2 < 0, only |s′′| is determined, there by showing that there are
infinite number of solutions. When h 6= 0, the form of H[s′′] shows that

s′′i = 0, 2 ≤ i ≤ n,

and the component along h satisfies the equation

2s′′1[a2 + 2a4s
′′
1

2] = h. (2.1)

Now, a2 = a′2(T − Tc) and the other parameters are constants near Tc. Thus
for h = 0, the solutions are

s′′ = 0, T > Tc

|s′′| =

√
a′2
2a4

(Tc − T )1/2, T < Tc.

The temperature dependence of |s′′| below Tc shows that the order parameter
exponent is β = 1/2. Keeping up to quadratic terms, these solutions also
show that

H[s′′]

T
= Lda0, T > Tc,

H[s′′]

T
= Ld[a0 −

a′2
2

2a4

(T − Tc)2], T < Tc.

Thus, when h = 0, the free energy density H[s′′]/Ld is

F = a0T, T > Tc,

= T [a0 −
a′2

2

2a4

(T − Tc)2], T < Tc.
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|s′′|

H

|s′′|

H

a2 > 0 a2 < 0

Figure 2.1: Hamiltonian Vs |s′′|.

Therefore, there is a discontinuity in specific heat across Tc and it is given by

4C = −T ∂
24F
∂T 2

= T 2
c

a′2
2

a4

at T = Tc.

A discontinuity in specific heat shows that the specific heat exponent α = 0.
At T = Tc, a2 = 0. Then Eq.(2.1) shows that

s′′1
3 =

h

4a4

.

Therefore, the critical isotherm exponent δ = 3. To obtain s′′1 with a small
non-zero h, rewrite Eq.(2.1) for a2 > 0 as

s′′1 =
h

a2 + 2a4s′′1
2
≈ h

2a2

=
h

2a′2(T − Tc)
, T > Tc.

To get an approximation when a2 < 0, rewrite Eq.(2.1) as

[−m2
0 + s′′1

2] = (−m0 + s′′1)(m0 + s′′1) =
h

4a4s′′1
,

where m2
0 = |a2|/2a4. That is

s′′1 = m0 +
h

4a4s′′1(m0 + s′′1)
.

Now, substituting s′′1 ≈ m0 on the r.h.s, one gets

s′′1 ≈ m0 +
h

8a4m2
0

=

√
a′2
2a4

(Tc − T )2 +
h

4a′2(Tc − T )
, T < Tc.
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Thus, when T > Tc, s
′′
1 → 0 as h → 0, while it approaches a finite value for

T < Tc. Now, the susceptibility can be calculated as

χ = (
∂s′′1
∂h

)T =
{

1/[2a′2Tc(T − Tc)], T > Tc
1/[4a′2Tc(Tc − T )], T < Tc.

Note that the parameter h in s′′1 actually represents h/Tc. Thus, the suscep-
tibility exponents are γ = γ′ = 1. The exponents given by Landau’s theory
are same as those obtained in the mean field solution of Ising model, which
is discussed in many standard text books (for eg. K. Huang, Statistical Me-
chanics). Since the spatial variation of the order parameter is not accounted
in these approaches, they can not provide any information on the exponents
ν and η.

2.2 Gaussian Approximation

The spatial variation of the spin field can be incorporated in the calculation
of the partition function in an approximate way. Exact calculations can not
be done due to the occurrence of quartic terms in the hamiltonian. Therefore,
these terms are approximated by assuming that the spatial variation of the
spin filed is a perturbation. That is, s(x) is written as s(x) = s′′ + s′(x),
where s′′ is the most probable value of s given by Landau’s theory, and s′(x)
is a ‘small’ correction for the spatial dependence. Then the L-G hamiltonian
becomes

H[s]

T
=
H[s′′]

T
+
∫ [

(a2 + 2a4s
′′ 2)s′ 2 + a4(s′ 2 + 2s′′ · s′)2 + c(∇s′)2

]
dx.

Now, terms beyond quadratic terms in s′ are omitted to obtain

H[s]

T
≈ H[s′′]

T
+
∫ [

(a2 + 2a4s
′′ 2)s′ 2 + 4a4(s′′ · s′)2 + c(∇s′)2

]
dx.

Let h be in the direction i = 1 so that s′′ is also along i = 1. Then the above
expression can be written as

H[s]

T
=

H[s′′1]

T
+
∫ [
{a2 + 6a4s

′′
1

2}s′1 2

+ c(∇s′1)2 + {a2 + 2a4s
′′
1

2}s′+ 2 + c(∇s′+)2
]
dx.

where s′+ is along a direction perpendicular to h, i.e. it has components along
i = 2, 3, · · ·n. In terms of Fourier components {sik}, one gets

H[s]

T
=

H[s′′1]

T
+
∑
k 6=0

[
a2 + 6a4s

′′
1

2 + ck2
]
|s1k|2

+
n∑
i=2

∑
k 6=0

[
a2 + 2a4s

′′
1

2 + ck2
]
|sik|2. (2.2)
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Thus, a quadratic approximation to H[s]/T , which includes the space depen-
dent part, has been obtained.

2.2.1 Above Tc

Consider the case T > Tc and h = 0. Even though h = 0, the susceptibility
can be computed from fluctuations in si(x). If T > Tc and h = 0, the most
probable value s′′ is 0. Therefore the quadratic approximation reduces to

H[s]

T
= a0L

d +
∑
i

∑
k 6=0

(a2 + ck2)|sik|2, (2.3)

where the contribution from H[s′′1]/T is shown explicitly. Since this expression
contains only quadratic terms in sik , their probability distribution is Gaussian.
Now < sik >, < s2

ik > and the free energy density F are to be calculated.
As noted earlier, the probability distribution of sik is

P ({sik}) =
1

Z
exp

[
− Lda0 −

∑
i k 6=0

(a2 + ck2)|sik|2
]
.

Normalization of P yields

Z exp(Lda0) =
∫ ∏

ik≤Λ

dsik exp
[
−

∑
i k 6=0

(a2 + ck2)|sik|2
]
.

Note that sik and si −k are complex conjugates since si(x) is a real function.
Therefore, the last expression is rewritten as

Z exp(Lda0) =
∫

(
∏

i k′≤Λ

dsik′dsi −k′) exp
[
− 2

∑
i k′ 6=0

(a2 + ck′ 2)|sik′|2
]
.

As shown in Figure 2.2 (for a two dimensional case), k′ is a vector in the
shaded region. Now,

dsik′dsi −k′ = 2dsRik′dsIik′ ,

where the superscripts R and I denote the real and imaginary parts respec-
tively. Therefore the expression for Z becomes

Z exp(Lda0) =
∫ ∏

i k′≤Λ

2dsRik′dsIik′ exp
[
− 2

∑
i k′ 6=0

(a2 + ck′ 2)(sR 2
ik′ + sI 2

ik′ )
]
.

Now, each of the integrals on the r.h.s can be calculated to obtain

Z exp(Lda0) =
∏

i k′≤Λ

π

(a2 + ck′ 2)
=
[ ∏
i k≤Λ

π

(a2 + ck2)

]1/2
.

Free energy density F defined as

Z = exp
[
− FLd

T

]
,
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Figure 2.2: k1 − k2 Plane.

can now be readily obtained and the result is

F = a0T −
T

2Ld
∑
i k≤Λ

ln
[ π

a2 + ck2

]
= a0T −

T

2Ld
n
∑
k≤Λ

ln
[ π

a2 + ck2

]
. (2.4)

where n denotes the number of components of the order parameter. Exactly
similar calculations can be done to obtain the averages. For instance, the
average of sik, which is defined as

< sik >=
∫ ∏

i k≤Λ

dsik sikP ({sik}),

is zero. More generally one finds that < siksjk >= 0 for i 6= j. The Fourier
transform of correlation function is given by

G(k) =< |sik|2 > =
∫ ∏

i k≤Λ

dsik |sik|2P ({sik}) =
1

2(a2 + ck2)
.

Note that,

m =< s >=< s′′ + s′ >=< s′′ >,

which is same as the most probable value. Hence the exponents β and δ,
which relate m to T and h, are the same as those (β = 1/2, δ = 3) given by
Landau’s theory. Now, the susceptibility χ can be obtained from G(k) as

χ =
G(0)

Tc
=

1

2Tca2

=
1

2Tca′2
(T − Tc)−1,
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and hence the exponent γ = 1. In other words, addition of Gaussian fluctua-
tions does not affect these exponents. However, one finds that

G(k) ∼ k−2 at T = Tc,

since a2(Tc) = 0. This result shows that the exponent η = 0. The characteristic
length ξ (coefficient of k) in the correlation function is given by

ξ =

√
c

a2

=

√
c

a′2
(T − Tc)−1/2.

Therefore the correlation length exponent ν = 1/2. The spatial correlation
function G(r) can be obtained by taking the inverse transform of G(k),

G(r) =
1

(2π)d

∫
exp(ık · r)G(k)dk

=
1

(2π)d
ξ2

2c

∫
exp(ık · r)

dk

1 + ξ2k2

=
1

(2π)d
ξ2−d

2c

∫
exp(ık′ · r/ξ) dk′

1 + k′ 2
.

In the last step, the substitution k′ = ξk has been made. For T close to
Tc, ξ → ∞ and the k′ integration can be extended over the full k-space to
obtain

G(r) ≈ 1

r
exp

[
− r

ξ

]
for d = 3.

Thus the spatial correlation function falls of exponentially and ξ is the char-
acteristic length.

Finally, to obtain the specific heat and the exponent α, consider the ex-
pression for F in Eq.(2.4). There, a0 is a smooth function of T and hence
the divergence in specific heat can arise only from the logarithmic term when
k ≈ 0. First of all, consider the limit of L tending to infinity, i.e. the ther-
modynamic limit. Now, each component ki = 2πni/L, so the number of wave
vectors in dk is (L/2π)ddk. In other words, the density of modes, each mode
being denoted by a wave vector k, is (L/2π)d. Therefore, in the limit of large
L, the sum over k can be replaced as

∑
k≤Λ

→ (
L

2π
)d
∫
dk.

Thus Eq.(2.4) becomes

F = a0T −
T

2

n

(2π)d

Λ∫
0

ln
[ π

a2 + ck2
dk
]
.
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Now, the specific heat C = −T∂2F/∂T 2 is given by

C =
n

2
a′2

2T 2 1

(2π)d

Λ∫
0

dk

(a2 + ck2)2
− na′2T

(2π)d

Λ∫
0

dk

a2 + ck2
.

As T approaches Tc, a2 tends to zero. Then the first integral on the r.h.s
diverges at lower limit for d ≤ 4. The second integral diverges for d ≤ 2. For
d > 4, both integrals are finite and hence there is no divergence in C as Tc
is approached. In other words, for d > 4, C has only a jump discontinuity
as given by Landau’s theory and the exponent α = 0. Making a change of
variable k = k′/ξ, where

ξ−2 =
a2

c
=
a′2
c

(T − Tc),

C can be expressed as

C =
n

2

[a′2T
c

]2
ξ4−dκdI1(ξΛ)− na′2T

c
ξ2−dκdI2(ξΛ).

Here κd is (2π)−d times the angular part of the d-dimensional integral and I1

and I2 are given by

I1(ξΛ) =

ξΛ∫
0

k′ d−1dk′

(1 + k′ 2)2

I2(ξΛ) =

ξΛ∫
0

k′ d−1dk′

1 + k′ 2
.

Now, for 2 < d < 4, as ξ →∞, I1(∞) remains finite. That is,

I1(∞) =

∞∫
0

xd−1dx

(1 + x2)2
=
π − πd/2
sin(πd/2)

.

I2 can be written as

I2(ξΛ) =

ξΛ∫
0

xd−3[1− 1

1 + x2
]dx

=
(ξΛ)d−2

d− 2
−

ξΛ∫
0

1

1 + x2

dxd−2

d− 2

=
(ξΛ)d−2

d− 2
− 1

d− 2

[ (ξΛ)d−2

1 + ξ2Λ2
+ 2I1(ξΛ)

]
.
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Therefore one finds that

ξ2−dI2(ξΛ) ≈ Λd−2

d− 2
,

for large ξ. The temperature dependence of C near Tc is

C = C0ξ
4−d + C1

= C0(T − Tc)(2−d)/2 + C1,

where C0 and C1 are some constants and 2 < d < 4. Thus α is found to be

α =
4− d

2
for 2 < d < 4.

For d = 4 one gets

I1(ξΛ) =

ξΛ∫
0

x3dx

(1 + x2)2
= −1

2

ξΛ∫
0

yd(1 + y)−1

=
1

2

[
ln(ξΛ)2 − 1 +O(ξΛ)−2

]
,

I2(ξΛ) =

ξΛ∫
0

x3dx

1 + x2
=

1

2

ξΛ∫
0

ydy

1 + y

=
1

2

[
ξ2Λ2 − ln(1 + ξ2Λ2)

]
.

Therefore, it is easily found that

C = C0 ln(T − Tc) + C1,

for d = 4 and so α = 0. Thus, these calculations show that the value of α
is not modified by the addition of Gaussian fluctuations for d ≥ 4. However,
for d < 4, the specific heat is found to diverge as Tc is approached. Thus it
may be said that Landau’s theory is consistent, i.e. the omission of spatial
fluctuations is appropriate only for d ≥ 4. Some of the other important points
to be noted are the following. (i) The exponents obtained are independent
of the details (a′2, c, etc.) of the hamiltonian as in Landau’s theory, and thus
they show universality. (ii) Singular behavior of thermodynamic quantities
arises from a hamiltonian, with regular parameters, which was obtained by
coarse graining over small length scales. (iii) The spatial dimension enters
into the exponent α, however, all the exponents are independent of the order
parameter dimension n.

2.2.2 Below Tc

Now consider the low temperature case when s′′ 6= 0 even when h = 0. As-
suming h to be along direction 1, the expression for s′′1 in Eq.(2.1) implies
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that

2a4s
′′
1

2 =
h

2s′′1
− a2.

Further, one also finds

a2 + 6a4s
′′
1

2 =
3h

2s′′1
− 2a2 =

3h

2s′′1
+ 2a′2(Tc − T ).

Therefore, Eq.(2.2) for the linearised hamiltonian becomes

H[s]

T
=

H[s′′1]

T
+
∑
k≤Λ

[ 3h

2s′′1
+ 2a′2(Tc − T ) + ck2

]
|s1 k|2

+
n∑
i=2

∑
k≤Λ

[ h
2s′′1

+ ck2
]
|sik|2.

This is exactly of the form as in Eq.(2.3) for the case T > Tc. Hence the free
energy density is

F =
H[s′′1]

Ld
− T

2Ld
∑
k≤Λ

ln
[ π

3h/(2s′′1) + 2a′2(Tc − T ) + ck2

]

− (n− 1)T

2

∑
k≤Λ

ln
[ π

h/(2s′′1) + ck2

]
. (2.5)

The Fourier transform of the correlation functions are given by

G1(k) = < |s1k|2 > =
1

2

1

3h/(2s′′1) + 2a′2(Tc − T ) + ck2
,

G+(k) = < |sik|2 > =
1

2

1

h/(2s′′1) + ck2
, 2 ≤ i ≤ n.

Thus the longitudinal (i = 1) and the transverse (2 ≤ i ≤ n) parts of the
correlation function are found to have different behavior. From the expression
for G1(k) with h = 0, the characteristic length is found to be

ξ′ = (
c

2a′2
)1/2(Tc − T )−1/2,

and so the exponent ν ′ = 1/2. Putting T = Tc yields G1(k) = k2 and hence
η′ = 0. Further, χ is found to be

χ =
G1(0)

Tc
=

1

4Tca′2(Tc − T )
,

which shows that the exponent γ′ = 1. As in the case of T > Tc, the spatial
correlation function can be shown to be

G(r) ≈ 1

r
exp

[
− r/ξ′

]
for d = 3.
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The transverse part of susceptibility is

χ+ =
G+(0)

Tc
=

s′′1
hTc

,

which diverges as h → 0. This unphysical divergence is a drawback of the
Gaussian approximation and this aspect is further discussed below.

For calculating the specific heat exponent, assume that h = 0. Then taking
the thermodynamic limit, Eq.(2.5) for the free energy density becomes

F = FL −
T

(2π)d

Λ∫
0

ln
[ π

2a′2(Tc − T ) + ck2

]
dk

− T (n− 1)

2

1

(2π)d

Λ∫
0

ln
[ π
ck2

]
dk.

The first term FL gives only a jump in the specific heat C. The last term does
not contribute to C since it is linear in T . The second term is similar to that
obtained for T > Tc, the differences are that the term n is absent and a′2 is
replaced by 2a′2. Therefore the specific heat C is

C =
1

2

(2a′2T )2

(2π)d

Λ∫
0

dk

2a′2(Tc − T ) + ck2
− 2a′2T

(2π)d

Λ∫
0

dk

2a′2(Tc − T ) + ck2
.

Then, the integrals can be analyzed exactly as before and the result is

C = C ′0ξ
′ 4−d + C ′1

= C ′0(Tc − T )−(4−d)/2 + C ′1,

where ξ′ is the correlation length for T < Tc and 2 < d < 4. Thus one gets

α′ =
{

(4− d)/2 for 2 < d < 4
0 for d ≥ 4,

Once again it is found that the exponents of Landau’s theory are not modified
by the addition of Gaussian fluctuations for d ≥ 4.

2.3 Fluctuations and Dimension

Earlier, it was observed that the Gaussian approximation is a consistent ap-
proach for d ≥ 4. Thus, fluctuations ( or at least their contributions to
specific heat) are negligible for d ≥ 4 and the Gaussian approximation seems
meaningful. As d becomes less than 4, fluctuations become more and more
important. In fact it is known that for d = 1 and n = 1, fluctuations are so
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strong that < s >= 0 for any finite T . Similar results hold for d = 2 and n ≥ 2
also. To give a qualitative argument for this fact, consider the transverse part
of the correlation function for T < Tc,

G+(r) = (2π)−d
∫

exp(ık · r)G+(k)dk

= (2π)−d
Λ∫

0

exp(ık · r)
kd−1dk

h/ < s > +2ck2
.

The l.h.s is a finite quantity since it is the average of spin components which
are bounded variables. For d ≤ 2, the lower limit contribution for the r.h.s
diverges as h→ 0. This unphysical result is a consequence of the assumptions
of Landau’s theory with Gaussian fluctuations. Divergence is absent if < s >
vanishes as h → 0. Note that for T < Tc and h = 0, there are an infinity of
configurations having approximately the same energy when n ≥ 2, i.e. when
G+ comes into picture. The most probable spin profile is spatially uniform
when h = 0. However, s(x) can change the direction very slowly and such a
configuration will have only slightly higher total energy due to the (∇s)2 term.
In Landau’s approach of considering only the most probable configuration,
configurations of almost same probability can not be accounted for. But, it
can be argued that the infinite number of configurations (of approximately
the same energy and hence same probability of occurrence), arising from all
possible directions of the spin variable, make < s >= 0. These facts can not
be incorporated in Landau’s approach and it should be concluded that it fails
completely for d ≤ 2. Fluctuations become very predominant for d ≤ 2 and
they can not be treated within the framework of Landau’s theory.

2.4 Adequacy of Gaussian Approximation

The results of Landau’s theory are based on the assumption that the partition
function can be calculated by taking the dominant contribution of the func-
tional integral defining it. Spatial fluctuations in the order parameter are,
then, accounted by linearising the hamiltonian around the dominant contri-
bution. This approach leads to a Gaussian probability distribution for the
Fourier amplitudes of the order parameter. It was argued that this procedure
is consistent for spatial dimension d ≥ 4. To establish this point further,
consider the partition function

Z = exp(−a0V )
∫
Ds exp

[
−
∫
V

{a2s
2(x) + a4s

4(x) + c[∇s(x)]2}dx
]
.
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For simplicity, it is assumed that T > Tc, h = 0 and n = 1. The argument in
the exponential can be rewritten with the transformations

x →
√
c

a2

x′, ∇x →
√
a2

c
∇x′ ,

dx →
√
c

a2

dx′, V → V ′
[ c
a2

]d/2
.

Then the integral becomes

I =
∫
V

{a2s
2(x) + a4s

4(x) + c[∇s(x)]2}dx

=
[ c
a2

]d/2 ∫
V ′

{a2s
2(x′) + a4s

4(x′) + c[∇s(x′)]2}dx′.

Now, changing s to
√
a2/a4 s

′, one gets

I =
[ c
a2

]d/2a2
2

a4

∫
V ′

{s′ 2(x′) + s′ 4(x′) + [∇s′(x′)]2}dx′.

Therefore Z can be written as

Z = exp(−a0V )J
∫
Ds′ exp

[
− Ω

∫
V ′

{s′ 4(x′) + s′ 4(x′) + [∇s′(x′)]2}dx′
]
,

where J is the Jacobian associated with the transformation of the order pa-
rameter and

Ω =
cd/2

a4

[a′2(T − Tc)]2−d/2.

If Ω is large, the integral may be approximated by taking the most dominant
contribution. As T approaches Tc from above, Ω becomes large when d > 4.
Thus the approximation scheme of Landau’s theory with Gaussian fluctuations
is adequate for d > 4.

To provide another argument for the validity of the Landau’s approach,
consider the expression

χ =
G(0)

T
=

1

T

∫
V

< s′(x)s′(0) > dx.

Using the expression obtained in the previous section for χ, when T < Tc, one
gets

1

4Ta′2(Tc − T )
=

1

T

∫
V

< s′(x)s′(0) > dx.
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The spin fluctuations have a correlation length ξ′ (for T < Tc) and for x within
ξ′, < s′(x)s′(0) > may be taken to be nearly constant. For x larger than ξ′, the
correlation function is negligible. So, the above relation can be approximated
as

1

4a′2(Tc − T )
≈< s′ 2 > ξ′ d.

Therefore, the mean square fluctuation in Gaussian approximation is

< s′ 2 >≈ ξ′ −d

4a′2(Tc − T )
=

1

4a′2

[ c

2a′2

]−d/2
(Tc − T )d/2−1.

It is also known that < s >=< s′′ > and

< s′′ >2=
a′2
2a4

(Tc − T ).

For Landau’s theory to be valid, it is necessary that

< s >2 � < (s− < s >)2 > = < s′ 2 > .

Thus one has the requirement

a′2
2a4

(Tc − T ) � 1

4a′2

[ c

2a′2

]−d/2
(Tc − T )d/2−1,

which yields

(Tc − T )d/2−2 � 2a′2
2

a4

[2a′2
c

]d/2
.

For this condition to be valid when T is close to Tc, it is required that d > 4.
Thus once again the conclusion is that the method is consistent only for d > 4.

2.5 Ginzburg Criterion

All the previous arguments, which show that fluctuations are significant for
dimension d < 4, are based on the behavior of thermodynamic quantities
predicted by Landau’s theory near Tc. When T is far from Tc, it may still
be appropriate to use the idea of considering the most probable spin profile
and Gaussian fluctuations. In other words, there is a temperature range near
Tc where the Landau’s approach is inadequate. Ginzburg criterion gives an
approximate estimate of this temperature range. The discontinuity in specific
heat obtained in Landau’s theory is

4C = T 2
c

a′2
2

a4

.
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However, addition of Gaussian fluctuations yields a divergence in C given by

C ≈ C0ξ
4−d,

for d < 4. Thus the inference is that fluctuations are important for d < 4 in
some temperature range near Tc. This range can be estimated (in a qualitative
manner) by comparing 4C and C. Their ratio is

C

4C
=

C0

4C
ξ4−d

=
C0

4C
[a′2
c

]d/2−2
(T − Tc)d/2−2

=
[[ C0

4C
]2/(4−d) c

a′2Tc

Tc
(T − Tc)

]2−d/2
=

[ ξTTc
T − Tc

]2−d/2
,

where ξT is defined as

ξT =
[ C0

4C
]2/(4−d) c

a′2Tc
.

The dimensionless parameter ξT can be estimated from experimental data.
Let it be expressed as

ξ
(4−d)/2
T =

C0

4C
[ c

a′2Tc

](4−d)/2
.

It is known that C0 is given by

C0 =
n

2

[a′2Tc
c

]2 I0

(2π)d
,

I0 =

∞∫
0

dk

(1 + k2)2
.

Therefore the expression for ξT is

ξ
2−d/2
T =

nI0

24C
[
2π(

c

a′2Tc
)1/2

]−d
=

nI0

24C
[2πξ0]−d,

ξ0 =
[ c

a′2Tc

]1/2
.

The definition of correlation length is

ξ =
[ c
a′2

]1/2
(T − Tc)−1/2,
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and so ξ0/ξ is given by
ξ0

ξ
=
[T − Tc

Tc

]1/2
.

Hence, if the correlation length can be measured at any temperature T (> Tc)
and further Tc is known, ξ0 can be estimated for different materials. Then,
from specific heat data, one can estimate 4C and hence ξT . Note that

C

4C
≥ 1 for |T − Tc| ∈ ξTTc.

In other words, a divergence in C will be experimentally observed in a temper-
ature range ξTTc. Alternatively, one may say that the criterion for the validity
of Landau’s theory with Gaussian fluctuations is that |T −Tc| is much greater
than ξTTc.

2.6 Failure of Perturbation Theory

Since some inconsistencies in Landau’s theory with Gaussian fluctuations have
been noted for d < 4, it is necessary to look for a more systematic method.
In fact, it is necessary to go beyond the quadratic approximation for the
hamiltonian in evaluating the partition function. A straight forward approach
would be to account for the quartic terms in the hamiltonian via perturbation
theory methods. The hamiltonian can be separated as

H

T
=
H0

T
+
H1

T
,

where H1/T represents the perturbation terms. Thus the first term H0/T
represents the quadratic terms in H/T . Assuming n = 1 (for simplicity)
H0/T and H1/T are given by

H0

T
=

∑
k≤Λ

(a2 + ck2)|sk|2,

H1

T
=

a4

Ld
∑

k1,k2,k3,k4≤Λ

sk1sk2sk3sk4δ(k1 + k2 + k3 + k4).

The term a0, which is independent of sk, and h have been omitted. Further,
the quartic term has been rewritten with four summations incorporating a
delta function. Now consider a4 to be a small (positive) constant so that H1/T

can be treated as a perturbation. The partition function can be expressed as

Z =
∫ ∏

k≤Λ

dsk exp
[−H0

T

][
1 +

H1

T
+

1

2
(
H1

T
)2 + · · ·

]
.
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Now, all the integrals involved in Z are Gaussian integrals and it would appear
that one can carry out the perturbation calculations to arbitrary order. Z can
also be expressed as

Z = Z0

[
1 +

< H1 >

T
+

1

2

< H1 >
2

T 2
+ · · ·

]
,

where Z0 is the partition function corresponding to H0/T and < H1 > /T etc.
are averages over the Gaussian distribution exp(−H0/T ). For the first order
term one gets

< H1 >

T
=
a4

Ld
∑

k1,k2,k3,k4≤Λ

< sk1sk2sk3sk4 > δ(k1 + k2 + k3 + k4).

The averages over exp(−H0/T ) can be easily obtained, in fact, it was shown
earlier that

< sk1sk2 > = δ(k1 + k2)G0(k1),

G0(k) =
1

2(a2 + ck2)
.

Averages of products of four sk (as occurring in < H1 > /T ) can be evaluated
with the help of the generating function

W (λ) =
∫ ∏

k≤Λ

dsk exp
[
−
∑
k≤Λ

(a2 + ck2)|sk|2 + λksk
]
,

where λk is a real parameter. Note that W (0) is same as the partition function.
Derivatives of W at λk = 0 yield

1

W (0)

∂W (0)

∂λk

= < sk >,

1

W (0)

∂2W (0)

∂λk∂λ−k

= < |sk|2 >,

1

W (0)

∂4W (0)

∂λk1∂λk2∂λk3∂λk4

= < sk1sk2sk3sk4 > .

Now, as in the calculation of the partition function, which led to Eq.(2.4),
rewrite W as

W (λ) =
∫ ∏

k′≤Λ

dsk′ds−k′ exp
[
−
∑
k′≤Λ

2(a2 + ck′ 2)|sk′|2 + λk′sk′ + λ−k′s−k′

]
.

Since sk′ and s−k′ are complex conjugates, one gets

W (λ) = 2
∫ ∏

k′≤Λ

dsRk′dsIk′ exp
[
−
∑
k′≤Λ

G0(k′)−1(sR 2
k′ + sI 2

k′ )

+ (λk′ + λ−k′)sRk′ + ı(λk′ − λ−k′)sIk′

]
.
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Using the result

∞∫
−∞

dx exp(−ax2 − bx) =

√
π

a
exp

[ b2

4a

]
,

all the integrals in W (λ) can be evaluated to obtain

W (λ) = 2
∏
k′≤Λ

√
πG0(k′) exp

[G0(k′)

4
(λk′ + λ−k′)2

]

×
√
πG0(k′) exp

[
− G0(k′)

4
(λk′ − λ−k′)2

]
.

That is
W (λ) = 2

∏
k′≤Λ

[πG0(k′)] exp
[ ∑
k′≤Λ

(λk′λ−k′)G0(k′)
]
.

Evaluating the derivatives of W at λk = 0, expressions for < sk > and <
|sk|2 > can be easily obtained. By repeated differentiation, one also gets

< sk1sk2sk3sk4 > = δ(k1 + k2)G0(k2)δ(k3 + k4)G0(k4)

+ δ(k1 + k3)G0(k3)δ(k2 + k4)G0(k4)

+ δ(k2 + k3)G0(k3)δ(k1 + k4)G0(k4).

which can be written as

< sk1sk2sk3sk4 > = < sk1sk2 >< sk3sk4 >

+ < sk1sk3 >< sk2sk4 >

+ < sk1sk4 >< sk2sk3 > .

Substitution in < H1 > /T yields

< H1 >

T
=

3a4

Ld
∑
{ki}≤Λ

δ(k1 + k2)G0(k2)

× δ(k3 + k4)G0(k4)δ(k1 + k2 + k3 + k4)

=
3a4

Ld

[ ∑
k≤Λ

G0(k)
]2
.

Now consider the limit of large volume V = Ld and replace the summation
over k by an integral with a density of states (L/2π)d. Thus the first order
term in Z is

< H1 >

T
= 3a4L

dκ2
d

[ Λ∫
0

G0(k)kd−1dk
]2
.

To study the behavior of Z (or free energy) near Tc, the limit T → Tc, i.e.
a2 → 0 is to be taken. Then, in < H1 > /T , one gets the integral

∫ Λ
0 kd−3dk
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Table 2.1: Exponents in Gaussian Approximation

β γ δ α ν η

1/2 1 3 (4− d)/2 1/2 0

which diverges (at the lower limit) for d ≤ 2. The second order approximation
worked out in a similar way leads to an integral

∫ Λ
0 kd−5dk (for a2 = 0) which

diverges for d ≤ 4. In general, one can show that the nth order approximation
diverges for d ≤ 2n. Thus the direct perturbation theory (where the expansion
parameter is a4) is useless. The divergence arises from modes of small k, i.e.
of long wavelength. Thus the conclusion is that long wavelength fluctuations
(which are responsible for the divergence of thermodynamic quantities) can
not be treated perturbatively.

2.7 Summary

Table 2.1 shows that addition of Gaussian fluctuations to Landau’s theory
does not alter the exponents β, γ and δ. However, α is found to depend
on d for d < 4. Landau’s theory predicted that α = 0 for all d. Further,
the Gaussian approximation has provided values for the exponents ν and η.
All exponents are independent of model parameters (a′2, a4, c etc.) and hence
the theory shows universality. The spatial dimension (d = 4) above which
Landau’s theory is consistent is known as the upper critical dimension. For
n-vector models, two dimension is called the lower critical dimension since
there is no sponteneous magnetization for d ≤ 2. For Ising model, the lower
critical dimension is one.
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Chapter 3

Scaling Hypotheses

Scaling hypotheses are attempts to generalize the results of Landau’s theory so
as to incorporate the experimental facts. In Landau’s theory, the average spin
variable, which is same as the most probable value, is given by the “equation
of state”

2s′′[a2 + 2a4s
′′ 2] = h.

Throughout this chapter, the order parameter is assumed to have only one
component. It was shown that the terms in the square bracket yield the
exponent β = 1/2 when h = 0 and

a2 = a′2(T − Tc).

So, to incorporate the correct β, the equation of state can be modified as

2s′′[a2 + 2a4s
′′ 1/β] = h.

To develop scaling hypotheses, the equations of Landau’s theory are rewritten
with the general exponents as shown in the above example. Substituting for
a2 and dividing by |T − Tc|3/2 one gets

2s′′
[
± a′2
|T − Tc|1/2

+
2a4s

′′ 1/β

|T − Tc|3/2
]

=
h

|T − Tc|3/2
,

where + sign is for T > Tc and − sign is for T < Tc. This equation can be
rewritten as

s′′

B|T − Tc|1/2
[
± 1 +

1

B2

( s′′

|T − Tc|β
)1/β]

=
Dh

|T − Tc|3/2
,

where

B =
√
a′2/(2a4),

D =
1

2a′2B
.

55
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Again, replacing 1/2 with β, B2 with B1/β and introducing ∆ = 3/2 one finds

s′′

B|T − Tc|β
[
± 1 +

( s′′

B|T − Tc|β
)1/β]

=
Dh

|T − Tc|∆
.

The parameter ∆ will be related to the susceptibility exponent γ later. Since

s′′ ∼ |T − Tc|β, for T ∼ Tc,

the quantity s′′/(B|T −Tc|β) is a scaled spin variable. Similarly, Dh/|T −Tc|∆
is the magnetic field scaled by a specific power of |T − Tc|. An important
observation is that the equation of state can be written in terms of two scaled
variables s′′/(B|T − Tc|β) and Dh/|T − Tc|∆ rather than with s′′, T and h as
three independent variables. Though this observation is from Landau’s theory,
Widom hypothesized that it is true in actual systems near the critical point,
i.e. when T ≈ Tc and h ≈ 0.

3.1 Scaling Hypothesis for Order Parameter

Widom’s scaling hypothesis for order parameter is

s′′

B|T − Tc|β
= W±

[ Dh

|T − Tc|∆
]
,

where W+ (for T > Tc) and W− (for T < Tc) are two functions of a single
variable. The validity of this hypothesis is to be checked against experimental
observations. According to Landau’s theory, β = 1/2, ∆ = 3/2 and W±(x) are
universal functions. Only the amplitudes B and D depend on the details (a′2
and a4) of the system. Before studying the predictions of Widom’s hypothesis,
a relation connecting γ and ∆ can be obtained. For T > Tc, the susceptibility
is

χ = (
∂s′′

∂h
)h=0 ≈ BD(T − Tc)β−∆W ′

+(0),

where W ′
+(x) is the derivative of W+(x). Thus, the parameter ∆, introduced

in the scaling hypothesis, is to be related to γ as

∆ = β + γ,

since χ ≈ (T − Tc)−γ.
A prediction of the scaling hypothesis is Widom’s scaling law which relates

the exponents δ (defined for T = Tc) and β and γ (defined for T 6= Tc). To
get this relation, assume that W+(x) varies as some power of x as x → ∞.
That is,

W+(x) ≈ a+x
λ as x→∞.
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h∗

m∗

W−

W+

Figure 3.1: Scaled Magnetization Vs Scaled Field.

Then, for T ≈ Tc, Widom’s hypothesis shows that

s′′

B|T − Tc|β
≈ a+

[ Dh

|T − Tc|∆
]λ
.

That is
s′′ ≈ Ba+D

λhλ|T − Tc|β−∆λ.

For T ≈ Tc, the temperature dependence of s′′ should vanish since it is known
that s′′ ≈ h1/δ. Thus, it is required that

λ =
β

∆
.

Then one obtains
s′′ ≈ Ba+D

λhλ,

and hence λ = 1/δ = β/∆. Thus δ is given by

δ =
∆

β
=
β + γ

β
, (3.1)

which is Widom’s scaling law. The experimental validity of this relation will
be discussed later. There are a few experimental facts which support the
scaling hypothesis.

(i) The measured equation of state data (i.e. relation connecting m, T and
h) show that when m∗ = m/|T −Tc|β is plotted against h∗ = h/|T −Tc|βδ, one
gets just two functions (Figure 3.1) for all temperatures. Thus all the data
for different temperatures fall on these two curves, one (W+) for T > Tc and
the other (W−) for T < Tc.

(ii) The equation of state for different materials are found to fall on identical
curves (within experimental errors) when proper amplitude factors B and D
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are introduced in the scaled variables. These experimental facts confirm the
existence of universal functions W+(x) and W−(x) in the scaling hypothesis.

(iii) Furthermore, similar equation of state data for different fluids also fall
on the same curves (of magnets) and thus establish the universality of the
functions W+ and W−.

(iv) The scaling hypothesis shows that χ should vary as

χ ≈
{
BD(T − Tc)−γW ′

+(0) , T > Tc
BD(Tc − T )−γW ′

−(0) , T < Tc
.

Thus, if the amplitudes are denoted as c+ and c− for T > Tc and T < Tc
respectively, then their ratio is

c+

c−
=
W ′

+(0)

W ′
−(0)

.

If the scaling hypothesis is correct, this should be a universal constant (for
given d and n). Landau’s theory gives c+/c− = 2, while numerical results show
that c+/c− ≈ 5.03 for 3-D Ising model. The exact 2-D Ising model calculations
show that c+/c− = 37.694. In addition to exposing the inadequacy of Landau’s
theory, these results show that the scaling functions W±(x) will depend on the
spatial dimension d and (most likely) order parameter dimension n.

3.2 Scaling Hypothesis for Free Energy Density

As was done for the order parameter, the scaling form for free energy density
also can be motivated using the Landau’s theory expression. The hamiltonian
(with n = 1) in the Gaussian approximation is

H

T
=

H(s′′)

T
+
∑
k≤Λ

(a2 + 6a4s
′′ 2 + ck2)|sk|2. (3.2)

Therefore, following the calculations of Chapter 2, the free energy density can
be written as

F (T, h) = FL −
T

2(2π)d

Λ∫
0

ln
[ π

a2 + 6a4s′′ 2 + ck2

]
dk. (3.3)

The divergence of specific heat, within this approximation, arises from the
second part of F and so it is termed as the “singular” part, Fs. Note that
Fs can be written as a function of a2 ∼ T − Tc and s′′ 2/a2. The scaling
hypothesis for s′′ was motivated by the replacement

s′′ 2

a2

∼ s′′ 2

T − Tc
→ [s′′(T − Tc)−β]1/β.
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According to the Widom’s hypothesis, this term is a function of h/|T − Tc|∆.
Therefore, the singular part Fs may be written as

Fs ≈ X±
[
|T − Tc|,

h

|T − Tc|∆
]
,

where X± are some functions of two variables. This constitutes the scaling
hypothesis for free energy density. Now, it is known that

C = −T ∂
2F

∂T 2
∼ |T − Tc|−α,

when h = 0. Hence, the singular part of free energy density should be of the
form

Fs ≈ |T − Tc|2−αY±
[ h

|T − Tc|∆
]
.

The same result can also be obtained with a slightly different argument. The
magnetization is given by

m = s′′ = −∂F
∂h

.

Therefore, the non-analytic part of s′′ is ∂Fs/∂h. Thus Widom’s hypothesis is
equivalent to the ansatz

Fs ≈ |T − Tc|xY±
[ h

|T − Tc|∆
]
,

where x is a parameter to be determined. Once again, the dependence of
specific heat on temperature shows that x = 2−α and thus one gets the same
form for Fs. Using the definition s′′ = −∂Fs/∂h, the exponents α, β and ∆
can be related. Differentiation of Fs yields

s′′ = −∂Fs
∂h

= − |T − Tc|2−α−∆ Y ′±
[ h

|T − Tc|∆
]
.

Note that the functions −Y ′±(x) are same as W±(x) introduced in the scaling
form of s′′. Since

s′′(h = 0) ∼ |T − Tc|β,
one gets the relation

β = 2− α−∆.

Now, use of the relation, ∆ = β + γ, yields the Essam-Fisher scaling law

α + 2β + γ = 2. (3.4)

Eliminating γ with the help of Widom’s scaling law, this relation can also be
written as

α + β(1 + δd) = 2. (3.5)
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Thus, among the four exponents α, β, γ and ∆, there are two independent
relations and hence if any two exponents are known, the other two can be
computed. These two relations, predicted by the scaling hypotheses, were
originally derived as inequalities, the Rushbroke’s inequality

α + β(1 + δ) ≥ 2 ,

and the Griffith’s inequality

α + 2β + γ ≥ 2 ,

from thermodynamic considerations. Successive derivatives of Fs w.r.t h (at
h = 0) have temperature exponents differing by ∆. So ∆ is usually known as
the gap exponent. It may be noted that all the three relations can be obtained
from the scaling ansatz for free energy density.

3.3 Scaling Hypothesis for Correlation Function

The hamiltonian of the Gaussian approximation, given in Eq.(3.2), shows that
the Fourier transform of the correlation function is

G(T, h, k) =
1

2

1

a2 + 6a4s′′ 2 + ck2
.

This expression can be rewritten as

G(T, h, k) =
1

2c

c

a2

a2

a2 + 6a4s′′ 2 + ck2
.

Using the definition of correlation length, ξ2 = c/a2, one finds that

G(T, h, k) =
1

2c

1

k2

ξ2k2

1 + 6a4s′′ 2/a2 + ξ2k2
.

According to the scaling hypothesis, s′′ 2/a2 is a function of h/|T−Tc|∆. Then,
incorporating the exponent η (which is zero in the Gaussian approximation),
the scaling ansatz for correlation function is found to be

G(T, h, k) = k−2+ηD±
[
ξk,

h

|T − Tc|∆
]
,

where D± depend on two scaled variables. The scaled field h/|T − Tc|∆ ap-
pearing in G is the same as that in s′′ and Fs.

The correlation length ξ, which diverges near Tc, is one of the characteristic
lengths of the system. Other lengths like the atomic spacing and range of
interaction are negligible when compared to ξ near Tc. Therefore, as done
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above, one may assume that the important length scale of systems near the
critical point is ξ and incorporate that in the scaling form for the correlation
function. This assumption is in accordance with the universality observed in
critical behavior - systems differing in small length scales are all characterized
by the same exponents. Since

ξ ∼ |T − Tc|−ν ,

G can also be written as

G(T, h, k) = k−2+ηD±
[ k

|T − Tc|ν
,

h

|T − Tc|∆
]
.

Now, note that χ = G(k = 0)/T and when h = 0,

χ ∼ |T − Tc|−γ.

Therefore, χ can be expressed as

χ ∼ lim
k→0

k−2+ηD±
[
k|T − Tc|−ν , 0

]
.

For the r.h.s to have a finite limit as k → 0, one should have

D±(x, 0)→ x2−η as x→ 0.

Hence, D±(k|T − Tc|−ν , 0) should vary as (k|T − Tc|−ν)2−η as k → 0. This
implies that

χ ∼ |T − Tc|−ν(2−η).

Therefore, one gets a new scaling law

γ = ν(2− η), (3.6)

connecting γ, ν and η. The three independent scaling laws obtained so far
show that, out of the six exponents, only three are independent.

3.4 Hyperscaling Law

All the three scaling laws obtained do not involve the spatial dimension d.
The hyperscaling law relates d, ν and α. When h = 0 and T > Tc, the scaling
form obtained for free energy density yields

Fs ≈ |T − Tc|2−αY+(0).

The Gaussian approximation of Eq.(3.3), with s′′ = 0 (since h = 0 and T > Tc)
gives

Fs ≈
Tκd

2

Λ∫
0

ln(a2 + ck2)kd−1dk.
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Integration by parts yields

Fs ≈
Tκd
2d

[
Λδ ln(a2 + cΛ2)− 2c

Λ∫
0

kd+1dk

a2 + ck2

]
.

Since the first term does not yield a divergence in the derivatives, the singular
part of F is

Fs ≈ −
T

2
κd

2c

d

Λ∫
0

kd+1dk

a2 + ck2
.

Changing the variable to k′ = kξ, where ξ2 = c/a2, one gets

Fs ≈
1

ξd

ξΛ∫
0

k′ d+1dk′

1 + k′2
.

Rewriting the integrand as

k′ d+1

1 + k′ 2
= k′ d−1 − k′ d−1

1 + k′ 2
,

Fs becomes

Fs ≈
1

ξd

[ξdΛd

d
−

ξΛ∫
0

k′ d−1dk′

1 + k′ 2

]
.

The integral on the r.h.s has already been evaluated in Chapter 2. Thus for
large ξ one finds

Fs ≈ f0 +
f1

ξ2
+
f2

ξ4
+
f3

ξd
,

where f0 etc. are constants. The temperature dependent contribution to
specific heat arises only from the last term since ξ−2 ∼ |T − Tc|. Hence the
singular part of free energy density varies as Fs ∼ ξ−d. Now, the experimental
fact that ξ ∼ |T − Tc|−ν can be used to conclude that

Fs ∼ |T − Tc|νd.

Comparing with the scaling form (when h = 0), one finds that 2− α = νd or
a new scaling law

α = 2− νd. (3.7)

This relation involving the spatial dimension is known as the hyperscaling law.

3.5 Scaling Laws from Scale Transformations

In this section, the four scaling laws are rederived from scale transformations.
The spatial length scale characterizing systems near the critical point is the
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correlation length. Further, its temperature dependence is ξ ∼ |T − Tc|−ν
where ν is the correlation length exponent. If the dependence of various phys-
ical quantities on length scales can be determined, their temperature depen-
dence may be obtained by assuming that ξ is the only important length scale
in the system. Of course, this assumption is meaningful only near Tc. First
of all, consider scale transformations to determine the dependence of physical
quantities on length scales.

If the unit of length is changed by a factor q, then the spatial interval ∆x
changes to ∆x′ = ∆x/q. Therefore the scale dimension of ∆x is −1. Thus, the
scale dimension of wave vector k is +1. In general, if any quantity A changes
to A′ = Aql, then its scale dimension is d(A) = l. Thus the scale dimension of
volume is d(V ) = −d. The scale dimension of ξ is, of course, −1. According
to the scaling hypothesis, the correlation function G(k) for h = 0 is of the
form

G(k) ∼ ξ2−ηQ(ξk),

where Q(x) is related to D+ (introduced earlier) as

Q(x) = xη−2D+(x, 0).

This form for G(k) is based on the assumption that it can be expressed in
terms of the scaled wave vector, and ξ is the only important length scale.
This relation then shows that the scale dimension of G(k) is d(G) = η − 2.
Now, from definition

G(k) ∼ < (spin density)2 > V.

Hence the scale dimension of spin density s is

d(s) =
1

2
[d+ d(G)] =

1

2
(d+ η − 2).

The total free energy is independent of change in length scale, but the free
energy density (F ) is proportional to V −1 and hence d(F ) = d. Now, magne-
tization is

m =< spin density > = −∂F/∂h.
Hence the scale dimension of h is

d(h) = d− d(s) =
1

2
(d− η + 2).

It may be surprising that an externally applied field is found to be altered
by a change of the length unit for the system. For consistency of the various
thermodynamic relations, the field has to be modified, as one is accepting the
scaling form of G(k). Finally, from the definition of Fourier amplitude,

s(x) =
1√
V

∑
k

sk exp(ık · x),
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Table 3.1: Scale Dimensions.

quantity dimension

∆x −1

k +1

ξ −1

G(k) η − 2

s(x) ,m (d+ η − 2)/2

sk (η − 2)/2

F d

V −d

h (d− η + 2)/2

one gets d(sk) = (η − 2)/2. These results are summarized in Table 3.1.
The hyperscaling law can be obtained in the following way. The dependence

of F on the scale parameter q is as qd. Since ξ ∼ q−1, the dependence of F on
ξ should be as ξ−d so that F 1/d and ξ−1 have the same dimension. Now,

C = −T ∂
2F

∂T 2
∼ |T − Tc|νd−2,

since ξ ∼ |T − Tc|−ν . Since C varies as |T − Tc|−α, one gets the hyperscaling
law,

α = 2− νd.
Since m ∼ qd(s), m is proportional to |T − Tc|νd(s). Thus one finds that

β = νd(s) since the exponent should be β. That is,

β =
ν

2
(d+ η − 2). (3.8)

Again, m ∼ qd(s) and h ∼ qd(h) , which mean that m ∼ hd(s)/d(h). Since
m ∼ h1/δ, one gets δ−1 = d(s)/d(h), and hence

δ =
d− η + 2

d+ η − 2
. (3.9)

Further, note that
m

h
∼ qd(s)−d(h) ∼ ξd(h)−d(s) ∼ |T − Tc|ν{d(s)−d(h)}.
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Therefore one finds that

χ =
∂m

∂h
∼ |T − Tc|ν{d(s)−d(h)}.

Then, the relation χ ∼ |T − Tc|−γ yields

γ = ν(2− η).

It is important to summarize the points emerging from the above derivation
of scaling laws.

(i) All the four relations have come about by matching the scale dimensions
of various quantities. But the scale dimensions d(G), d(s), d(sk) and d(h) were
obtained using the scaling ansatz for the correlation function which is based
on the assumption that the correlation length is the only important length
scale near the critical point.

(ii) Using the hyperscaling relation, Eqs.(3.8) and (3.9) can be rewritten
as the Widom’s scaling law in Eq.(3.1) and the Essam-Fisher scaling law in
Eq.(3.4). Therefore the basic relations may be collected together as

δ = (β + γ)/β,

α + 2β + γ = 2,

γ = ν(2− η),

α = 2− ν d.
(iii) Thus, there are four independent relations among the six exponents,

and hence only two exponents are independent. Note that the two definitions,
one for ξ and the other for G(k), were used in the derivation of scaling laws.

(iv) The hyperscaling law is satisfied by the exponents in Gaussian ap-
proximation (α = 2 − d/2 for d < 4, α = 0 for d ≥ 4 and ν = 1/2) only for
d < 4. Since the Gaussian approximation is expected to be correct for d ≥ 4,
it should be suspected that the hyperscaling law is valid only for d < 4.

(v) The 2-D Ising model exponents, α = 0, β = 1/8, ν = 1, η = 1/4, γ =
7/4 and ∆ = 15, satisfy the scaling relations.

(vi) For isotropic ferromagnets (n = 3), putting experimental values γ =
1.33 and η = 0.07, the scaling relations yield ν = 0.69, α = −0.07, β = 0.37
and δ = 4.6. For liquid-gas transition (n = 1), experimental values γ = 1.20
and η = 0.11 and the scaling relations yield ν = 0.64, α = 0.08, β = 0.36 and
δ = 4.4. These ‘calculated’ results are in agreement with the measured values
within 10% accuracy.

3.6 Kadanoff Transformation and Scaling

Kadanoff has developed a different set of arguments which lead to the scaling
ansatz for free energy density and correlation function and hence the scaling
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Figure 3.2: Ising Lattice and Cells.

laws. Consider the Ising model and imagine that the lattice is divided into
cells as shown in Figure 3.2. The side length of a cell is qa0 where a0 is the
lattice spacing. The parameter q is chosen such that a0 � qa0 � ξ, the
correlation length. Thus there are a number of lattice points in each cell.

If the interactions between the cells are turned off, the correlation length
will be less than qa0. Since ξ � qa0 in the actual case, it can be concluded
that the interactions between the cells are very important. Experimental
observation of universality indicates that the cooperative behavior of a system
close to the critical point is insensitive to features over length scales smaller
than ξ. The cell size is one of such insensitive parameters.

An average spin parameter µc, where c denotes the cell index, may be
associated with each cell. For q = 1, one should have µc = si. It can be
expected that, for ξ � qa0, most of the spins in a particular cell are in the
same direction. Further, the average spin parameters {µc} should be such
that the interaction among them and with an external field yield the long
range correlations existing in the original system. Thus, the attempt is to
average out the short distance variations of the spins si and make an Ising
model with average spin parameters {µc} so that the new model has the same
characteristics over long length scales. It is a hypothesis that a new model,
satisfying these requirement, can be constructed.

The new Ising model, which has a spacing qa0, is supposed to have the same
correlation length. If the correlation lengths are measured in units of lattice
spacing, the correlation length of the new model is much smaller than that
of the old model. Note that the correlation length is always to be compared
to a basic length scale, such as lattice spacing, to decide whether the system
is near the critical point or not. Because of the small correlation length, an
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independent view of the new system shows that it is away from the critical
point than the original system. This means that the temperature and field
parameters of the new model are different from those of the old model. If the
critical temperatures of the two models are same, then the parameters

ε = (T − Tc)/Tc , h = hex/T ,

will have different values ε′ and h′ for the new model. The parameters ε′ and
h′ should describe, as said earlier, the interaction between the cells and with
an external field. Note that ε′ contains Tc and hence the coupling constant
of the Ising model. If the external field is absent in the original model, it
should be so in the new model also. Further, h′ should depend on the cell size
parameter (q) in such a way that h′ = h when q = 1. Therefore, one may
assume that h′ = qxh where x is some number. According to the discussion
on scale transformations, x is the scale dimension of the field. In a similar
way, it may be assumed that when original system is critical (ε = 0), the new
system also is critical (ε′ = 0). Then, as in the case of h, one may assume the
relation ε′ = qyε where y is some other number. These assumptions yield the
scaling ansatz for free energy density and correlation function.

3.6.1 Relation between Cell and Site Spins

To find a relation connecting µc and sc, consider the change in energy ∆E due
to a change ∆h in the field. Here, sc is the site spin for some i (site index)
belonging to the cth cell. ∆E is given by

∆E =
∑
i

∆hsi.

This change in energy should be the same in the new model also. That is

∆E =
∑
c

∆h′µc.

Assuming that the spins in a particular cell are in the same direction, one gets

∆E =
∑
c

∆h
∑
i∈c

si =
∑
c

∆hqdsc,

where sc, the site spin for any i belonging to cell c, takes values ±1. Substi-
tuting for ∆h, one gets

∆E =
∑
c

∆h′q−xqdsc,

which implies that
µc = qd−xsc.
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3.6.2 Scaling of Free Energy Density

Let the singular part of free energy density of the original model be denoted
as Fs(ε, h). Since the new model is again an Ising model, the singular part of
free energy density will be the same function Fs(ε

′, h′) of the variables ε′ and
h′. There are qd original spins in each of the cells of the new model. Therefore,
one gets the relation

qdFs(ε, h) = Fs(ε
′, h′).

Substitution of ε′ and h′ leads to a functional equation

Fs(ε, h) = q−dFs(εq
y, hqx).

According to Kadanoff’s assumptions, the parameter q (with the condition
a0 � qa0 � ξ) is arbitrary. That is, the functional equation must be satisfied
for all q satisfying this condition. This is possible only if Fs(ε, h) is of the form

Fs(ε, h) = |ε|d/yY
( h

|ε|x/y
)
.

where Y is a suitable function of the scaled variable h/|ε|x/y. By direct sub-
stitution, it can be easily verified that this form for Fs satisfies the functional
equation. With the identifications, 2 − α = d/y and ∆ = x/y, the above
expression is found to be the same as the scaling form for free energy density.

3.6.3 Temperature Dependence of ξ

The original model and the cell model should have the same correlation length.
That is, ξ(ε, h) = ξ(ε′, h′). Since both models are Ising models, the functional
dependence of ξ on temperature and field variables in both models is same.
Introducing the lattice spacing a0, the equality can be expressed as

ξ(ε, h)

a0

= q
ξ(ε′, h′)

qa0

.

If ξ+ denotes the correlation length in units of lattice spacing, the functional
equation becomes

ξ+(ε, h) = qξ+(εqy, hqx),

where the expressions for ε′ and h′ have been used. This fact, that the cor-
relation length (in units of lattice spacing) is smaller for the new model by a
factor q, was stated earlier. Since q is arbitrary, the solution of the functional
equation is of the form

ξ+(ε, h) = |ε|−1/yf
( h

|ε|x/y
)
,
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where f is a function of the scaled field variable. For h = 0, one gets

ξ+(ε, 0) = |ε|−1/yf(0),

which is the experimentally observed divergence of correlation length if ν =
y−1. Combining with the relation, 2− α = d/y obtained earlier, one gets the
hyperscaling law α = 2− νd.

3.6.4 Scaling of Correlation Function

The spatial correlation function of the original Ising model is

G(r, ε, h) =< si si+r >,

Let all distances be measured in units of the lattice spacing a0. As in the
case of correlation length, it is necessary to consider distances in natural units
to obtain a functional relation for the correlation function. The cell spins
associated with si and si+r are µc and µc+r/q. Their separation in units of
the cell lattice spacing is r′ = r/q. The correlation function < µc µc+r/q > of
the new model is the same function G of the variables r′, ε′ and h′. Using the
relation µc = qd−xsc, one gets

G(r, ε, h)(qd−x)2 = < si si+r > (qd−x)2

= < µx µx+r/q >

= G(r/q, ε′, h′).

Again, substitution of ε′ and h′ yields the functional equation

G(r, ε, h) = q−2(d−x)G(r/q, εqy, hqx).

Solution of this functional equation is

G(r, ε, h) = |ε|2(d−x)/y g
(
r|ε|1/y, h

|ε|x/y
)
.

The Fourier transform of the correlation functions are, then, related as

G(k, ε, h) = |ε|2(d−x)/y
∫

exp(ık · r)g
[
r|ε|1/y, h

|ε|x/y
]
dr

= |ε|2(d−x)/y−d/y
∫

exp
[
ık · z|ε|−1/y

]
g
[
z,

h

|ε|x/y
]
dz

= |ε|(d−2x)/yg(k|ε|−1/y,
h

|ε|x/y
).

With y−1 = ν, and hence |ε|−1/y ∼ |T − Tc|−ν ∼ ξ, one gets

G(k, ε, h) = k(d−2x)D
(
kξ,

h

|T − Tc|∆
)
,
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where

D
(
kξ,

h

|T − Tc|∆
)

= [
k

ξ
]2x−d g

(
kξ,

h

|ε|x/y
)
,

and

∆ =
x

y
, x =

1

2
(d+ 2− η).

Thus the scaling form of correlation function can also be motivated using
Kadanoff’s ideas. Note that the expressions for x and d − x = (d − 2 + η)/2
match with the scale dimensions of h and magnetization (or spin density)
obtained earlier. The main assumptions of Kadanoff’s derivation of the scaling
behavior are the following.

(i) Since correlation length is very large near the critical point, one may
define a new Ising model with cell averaged spin variables where the cell size
q satisfies the conditions a0 � qa0 � ξ.

(ii) The new spin variables for the cells are to be related to the old vari-
ables with the requirement that the interactions of the new variables among
themselves and with an external field reproduce the long range correlations in
the original model.

(iii) Parameters of the models are related by power laws.

3.7 Cell Hamiltonian and Kadanoff Transformation

Since the cell averaging procedure, introduced by Kadanoff, explains the scal-
ing behavior, a rigorous way to obtain the cell hamiltonian is discussed below.
The cell spin variable is defined as the average of the spins belonging to a
cell, i.e. the sum of spin values in the cell divided by qd. For describing the
spin variations over distances larger than qa0, these cell averaged variables
are expected to be adequate. However, they can not describe spin varia-
tions over distances smaller than qa0. This feature is similar to that in an
Ising model where the cut-off length for spin variations is the lattice spacing
a0. The Landau-Ginzburg model accounts for spin variations over distances
larger than a cut-off value b = 2π/Λ.

Now, recall that if P (q1, q2) is the joint distribution of two random variables,
Q1 and Q2, then the distribution of Q = (Q1 +Q2)/2 is given by

P (q) =
∫
P (q1, q2)δ

[
q − 1

2
(q1 + q2)

]
dq1dq2 = < δ

[
q − 1

2
(q1 + q2)

]
> .

The cell spin is defined as

sc = q−d
∑
i∈c

si,
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The symbol
∑
i∈c indicates summation over all lattice points i belonging to the

cell c. The cell parameter µc of previous section is proportional to sc. Thus
the probability distribution of the cell variables is

P ′[s] = <
∏
c

δ
[
sc − q−d

∑
i∈c

si
]
>,

=
1

Z

∫
exp

[
− H[s]

T

]∏
c

δ
[
sc − q−d

∑
i∈c

si
]∏

i

dsi,

where H[s] and Z are respectively the hamiltonian and partition function of
the Ising model. The hamiltonian H ′[s] and partition function Z ′ of the cell
model are related as

P ′[s] =
1

Z ′
exp

[
− H ′[s]

T

]
.

The two probability distributions, P [s] and P ′[s], or the hamiltonians H[s]
and H ′[s], are equivalent as far as spin variations over distances greater than
qa0 are concerned. Obtaining H ′[s] from a given H[s] is called a Kadanoff
transformation Kq. It may symbolically be written as

H ′[s] = KqH[s],

where q is the cell size parameter. Obviously, K1 (obtained with q = 1) is the
identity transformation. If another Kadanoff transformation Kq′ is performed,
one gets

H ′′[s] = Kq′H
′[s] = Kq′KqH[s].

Two transformations lead to a cell size parameter q′q. Therefore, H ′′[s] may
also be written as

H ′′[s] = Kqq′H[s].

Thus the transformations {Kq} have the property

Kq′Kq = Kqq′ .

Kadanoff transformation can not produce any singular behavior, in the ther-
modynamic quantities, since the long wave length variations of spins, i.e. vari-
ations on a scale larger than qa0, are unaltered by it.

3.8 Finite Size Scaling

The scaling hypotheses introduced so far, for the various thermodynamic quan-
tities, have been in reference to an infinite system. It is of interest to see how
they can be generalized to the case of finite systems. The linear size L of a
finite body is an additional length scale and one would expect all thermody-
namic quantities to depend only on the scaled variable L/ξ(T ). Note that
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the correlation length ξ(T ) ∼ ∆T−ν , where ∆T = T − Tc, is the fundamental
length scale in the critical region. Suppose that some physical quantity P
varies as (∆T )−ρ, in an infinite system, with exponent ρ (for example, α, β,
etc.). The finite size scaling ansatz for P , in the limit of large L and small
∆T , is

P (T, L) ∼ (∆T )−ρfp
[ L

ξ(T )

]
,

where fp is some suitable function characteristic of the quantity P . The func-
tion fp(x) should approach unity as x → ∞ so that P (T, L) reduces to its
bulk form as L → ∞. When L is finite, all the physical quantities are ana-
lytic functions of the thermodynamic variables. Recall that the divergence or
the anomalous behavior in the critical region is a manifestation of the infinite
correlation length which exists only in an unbounded system. The analytic
character of P (T, L) is recovered if it is assumed that fp(x)→ xρ/ν as x → 0.
Then, as T → Tc, P (T, L) varies as

P (T, L) ∼ ∆T−ρ[L(∆T )ν ]ρ/ν ∼ Lρ/ν .

This result, which is a consequence of the finite scaling ansatz, shows that the
behavior of P even in a finite system is determined by the critical exponents.

Taking P as the free energy density, one gets

F (T, L) ∼ (∆T )2−αfF
[
L(∆T )ν

]
,

since ρ = α − 2. If the field strength h is non-zero, the function fF can be
generalized as

F (T, L) ∼ (∆T )2−αfF
[ h

(∆T )∆
, L(∆T )ν

]
.

This scaling form will be derived using renormalization group ideas in the
following chapter.
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Chapter 4

Renormalization Group Theory

The scaling hypotheses for important thermodynamic quantities were intro-
duced in the previous chapter. Then, scaling laws, which are relations among
the critical exponents, were derived by determining the changes in physical
quantities due to a change in length scale, and assuming that the correlation
length is the only important length scale in critical region. Kadanoff’s hy-
pothesis about the equivalence of two models differing in short length scale
features, but yielding identical long length scale properties, was also discussed
there. Though this hypothesis could be used to motivate the scaling forms for
the thermodynamic quantities, a number of adhoc assumptions were necessary.
Nevertheless, it suggests that the averaging process, which smears out short
length scale features, is something like a symmetry transformation for critical
phenomena. Many characteristics of physical systems can be understood if
the symmetries in the system are known. Effects of small perturbations which
destroy the symmetries can also be classified using the characteristics of the
unperturbed system. Spherically symmetric one particle quantum mechani-
cal systems illustrate these points. The spherical symmetry of the potential
yields the usual quantum numbers (n, l,m, · · ·) for labeling the states, selec-
tion rules for transitions induced by a non-symmetric perturbing potential,
etc. Thus, if Kadanoff transformations can be developed as symmetry oper-
ations for critical systems, it might become possible to extract many of their
general features near the critical point. The renormalization group (RG) the-
ory employs Kadanoff transformations and a change of spatial length scale to
extract the properties near the critical point. Within this theoretical frame-
work, the scaling hypotheses emerges in a very natural manner. Furthermore,
it also provides methods for calculating the critical exponents. First of all,
the RG ideas are elaborated below using the 1−D Ising model.

74
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Figure 4.1: Steps involved in RG Transformation.

4.1 RG for 1-D Ising Model

The hamiltonian for the nearest neighbor 1-D Ising model is

H

T
= −k

∑
j

sjsj+1 − h
∑
j

sj,

where k = J/T and h = hex/T . The partition function for N spins is

ZN =
∑
config

exp
(
− H

T

)
.

The hamiltonian is completely specified by two parameters k and h. So, one
can imagine a two dimensional parameter space, with each point in the space
representing a certain hamiltonian. The free energy per spin is

F [H] = F (k, h) = − T
N

ln(ZN).

A Kadanoff transformation can be performed by summing the configurations
of every alternate spin variable in the calculation of ZN . This procedure will
give another Ising model (with parameters k′ and h′), but with a lattice spacing
which is twice the original spacing. Then, a change in the unit of length is
introduced (in fact the length unit is doubled) so that the new model looks
exactly like the old one. From the hamiltonian of the new model, it will be
possible to determine the parameters k′ and h′ in terms of k and h. Thus the
two operations, partial summation of spin configurations and spatial length
rescaling, can be thought of as a transformation in the parameter space. The
two operations are indicated in Figure 4.1.
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The probability distribution of the spins is

P ({si}) =
1

Z
exp(−H

T
).

The probability distribution of the new model can be expressed as

P ′({s2i+1}) =
∑

con − i=even

P ({si}).

Note that the partition function computed from P ′ will be Z itself. Therefore
the hamiltonian of the new model can be defined as

exp
(
− H ′

T

)
=

∑
con − i=even

exp
(
− H

T

)
.

Defining p(si, si+1) as

p(si, si+1) = exp
(
ksisi+1 +

1

2
hsi
)
,

the Boltzmann factor exp(−H/T ) becomes

exp
(
− H

T

)
= exp

(1

2
hs1

)∏
i

p(si, si+1) exp
(1

2
hsN

)
.

Now, let p′(si−1, si+1) be defined as

p′(si−1, si+1) =
∑

con − si

p(si−1, si)p(si, si+1)

= 2 cosh[k(si−1 + si+1) + h] exp[
h

2
(si−1 + si+1)].

Then, assuming N to be odd, the new hamiltonian can be written as

exp
(
− H ′

T

)
= exp

(h
2

(s1 + sN)
)∏

i

p′(s2i−1, s2i+1).

Now, p′ may be expressed as an exponential function so that the parameters
k′ and h′ of H ′ can be readily identified. Note that when s2i−1 and s2i+1

take values ±1, (s2i−1 + s2i+1) takes values ±2 and 0. Hence p′ takes three
distinct values. Therefore, three parameters are required to express p′ as an
exponential function. Thus p′ may be expressed as

p′(s2i−1, s2i+1) = 2 cosh[k(s2i−1 + s2i+1) + h] exp[
h

2
(s2i−1 + s2i+1)]

= exp[k′s2i−1s2i+1 +
h′

2
(s2i−1 + s2i+1) + c′], (4.1)
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where c′ is the additional parameter. Then, H ′ can be written as an Ising
model hamiltonian

H ′

T
= −k′

∑
j

s2j−1s2j+1 − h′
∑
j

s2j−1 − (N − 1)
c′

2
.

On renumbering the spin variables as s2j−1 → sj, H
′/T takes the form

H ′

T
= −k′

∑
j

sjsj+1 − h′
∑
j

sj − (N − 1)
c′

2
.

Then, Eq.(4.1), which defines the new parameters, is

exp
(
k′sisi+1 +

h′

2
[si + si+1] + c′

)
= 2 cosh[k(si + si+1) + h] exp[

h

2
(si + si+1)]. (4.2)

Together with the constant term (N −1)c′/2, H ′ will yield the same partition
function. The constant c′ is simply the free energy (per spin) arising from
the spins whose configurations have been summed up in obtaining H ′. The
definition of H ′ may be modified as

exp
(
− H ′

T
−N ′c′

)
=

∑
con − i=even

exp
(
− H

T

)
,

where N ′ ≈ N/2 since N is a large number. Then, H ′/T is given by

H ′

T
= −k′

∑
j

sjsj+1 − h′
∑
j

sj,

and it is identical to the hamiltonian of the original Ising model. With this
definition of H ′, the partition functions Z ′N ′ and ZN are related as

Z ′N ′ exp(−N ′c′) = ZN . (4.3)

The equations for k′ and h′ can be obtained by substituting the possible
values of si and si+1 in Eq.(4.2). Putting si = si+1 = 1, one gets

exp(k′ + h′ + c′) = 2 cosh(2k + h) exp(h),

while the case si = −1 and si+1 = 1 yields

exp(−k′ + c′) = 2 cosh(h).

The same relation is obtained with si = 1 and si+1 = −1. Finally, si = si+1 =
−1 leads to

exp(k′ − h′ + c′) = 2 cosh(2k − h) exp(−h).
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These equations can be easily manipulated to obtain expressions for k′, h′ and
c′. The final results are

exp(4k′) = cosh(2k + h)
cosh(2k − h)

cosh2(h)
,

exp(2h′) = exp(2h)
cosh(2k + h)

cosh(2k − h)
,

exp(4c′) = 24 cosh(2k + h) cosh(2k − h) cosh2(h). (4.4)

Thus, with any given values of k and h, k′ and h′ can be calculated. In
other words, starting with an Ising model, a new Ising model can be derived
by employing partial summation of the spin configurations. This procedure
is usually known as spin decimation. However, the resulting lattice has a
spacing 2a0. So the unit of length is doubled so that the numerical value
of the new spacing is same as the original one. Due to this rescaling, any
interval ∆x in the original model becomes ∆x′ = ∆x/2. Instead of decimating
alternate spins, if every q spins are decimated and a spatial rescaling factor q is
introduced, the relation obtained is ∆x = q∆x′. In particular, the correlation
length of the two systems are related as

ξ(k, h) = qξ(k′, h′). (4.5)

Thus, spin decimation and spatial rescaling produce a new system with a
smaller correlation length. Therefore, unless ξ(k, h) = ∞, this procedure
drives the system away from the critical point. Since H and H ′ are identical
in structure, the functional forms of ξ(k, h) and ξ(k′, h′) are the same.

Using the definition of free energy per spin,

F [H] = − T
N

ln(ZN),

and Eq.(4.3), one gets

qF [H]− c′ = F [H ′], (4.6)

where the general relation qN ′ = N has been used. The factor q in this
relation indicates that each site of the new model contains q sites of the old
model. The parameter c′ is the contribution (per site) from the decimated
spins.

Flow Equations The equations connecting the parameter set (k′, h′) to
(k, h) are known as flow equations. Symbolically, they are expressed as

k′ = Rk(k, h),

h′ = Rh(k, h).
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The equation for c′ is not considered since it is explicitly given by k and h.
Since k = J/T , these equations can also be rewritten in terms of T and h as

T ′ = R1(T, h),

h′ = R2(T, h).

Thus, the application of an RG transformation produces an identical system
but at a different point in the parameter space. The fixed point (T ∗, h∗) of
the transformation is defined as

T ∗ = R1(T ∗, h∗),

h∗ = R2(T ∗, h∗).

By definition, the fixed point is unaltered by the transformation. That is, if
H = H∗, then H ′ = H∗. However, the correlation length at the fixed point
must satisfy Eq.(4.5),

ξ(T ∗, h∗) = qξ(T ∗, h∗),

where q is the scale factor. This equation has solutions ξ(T ∗, h∗) = 0 or ∞.
The zero value is associated to a paramagnetic state while the infinite value
corresponds to a system at the critical point. Thus (neglecting the solution
ξ(T ∗, h∗) = 0) the fixed point in the parameter space represents a critical
system since the correlation length corresponding to that point is infinity.
The flow equations can be linearised near the fixed point by writing

T ′ = T ∗ + ∆T ′,

h′ = h∗ + ∆h′,

T = T ∗ + ∆T,

h = h∗ + ∆h.

In matrix notation, the linearised transformation equations are(
∆T ′

∆h′

)
=
(
R11 R12

R21 R22

)(
∆T
∆h

)
(4.7)

where

R11 =
∂R1

∂T

∗
, R12 =

∂R1

∂h

∗
,

R21 =
∂R2

∂T

∗
, R22 =

∂R2

∂h

∗
.

The deviations ∆T and ∆h can be expressed as(
∆T
∆h

)
= z1

(
e11

e21

)
+ z2

(
e12

e22

)
(4.8)
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where e1 and e2 are the eigenvectors of the 2×2 matrix with eigenvalues ρ1(q)
and ρ2(q). The combining coefficients z1 and z2 can be expressed in terms of
∆T and ∆h. Then the linearised RG equations can also be written as(

∆T ′

∆h′

)
= z1ρ1(q)

(
e11

e21

)
+ z2ρ2(q)

(
e12

e22

)
. (4.9)

If the transformation is applied once again, one gets ∆T ′′ and ∆h′′ from ∆T ′

and ∆h′. That is,(
∆T ′′

∆h′′

)
= z1ρ

2
1(q)

(
e11

e21

)
+ z2ρ

2
2(q)

(
e12

e22

)
However, ∆T ′′ and ∆h′′ could have been obtained from ∆T and ∆h by deci-
mating q2 spins and then employing a spatial rescaling by q2. Thus one can
also write (

∆T ′′

∆h′′

)
= z1ρ1(q2)

(
e11

e21

)
+ z2ρ2(q2)

(
e12

e22

)
.

The two expressions obtained for ∆T ′′ and ∆h′′ show that

ρi(q
2) = ρ2

i (q), i = 1, 2.

For this relation to be obeyed for arbitrary q, one should have

ρi(q) = qyi , i = 1, 2.

Thus the dependence of the eigenvalues on the parameter q is obtained.

To work out the eigenvalues corresponding to the flow equations (4.4), it is
more appropriate to define a reduced temperature

T0 = exp(−4k) = exp(−4J

T
).

Thus at T = 0, T0 = 0 and at T = ∞, T0 = 1. The reduced temperature T0

and h are then the parameters characterizing the hamiltonian. In terms of T0

and h, the flow equations reduce to

T ′0 = 4T0
cosh2(h)

1 + T0 + 2T0 cosh(h)
,

h′ = h+
1

2
ln
(eh + e−hT0

e−h + ehT0

)
.

The fixed point values are h∗ = 0, and T ∗0 = 0 and T ∗0 = 1. The last value
corresponds to T = ∞ and hence represents the paramagnetic state. Thus
(T ∗0 , h

∗) = (1, 0) is a trivial fixed point which is of no interest. The point
(T ∗0 , h

∗) = (0, 0) is the non-trivial fixed point. The elements of the matrix
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in Eq.(4.7) are given by R11 = 4, R12 = 0, R21 = 0 and R22 = 2. Thus the
transformation matrix is diagonal and hence its eigenvalues are

ρ1(q = 2) = 4 = 22,

ρ2(q = 2) = 2 = 21,

which yield y1 = 2 and y2 = 1. With the usual set of eigenvectors, e1 = (1, 0)
and e2 = (0, 1), Eq.(4.8) yields z1 = ∆T0 = T0 and z2 = ∆h = h. Thus, in
the neighborhood of the fixed point (T ∗0 , h

∗) = (0, 0), the RG transformation
(4.9) can be written as

T ′0 = 22T0

h′ = 21h.

Generalizing to the case of arbitrary scale factor q, one gets

T ′0 = q2T0

h′ = q1h.

Note that these are same as the heuristic relations proposed in Kadanoff’s
derivation of scaling behaviour. In the notation used there, x = y2 = 1 and
y = y1 = 2.

The relation between the correlation lengths of the two systems is

ξ(T0, h) = qξ(T ′0, h
′) = qξ(qy1T0, q

y2h).

Now, consider the case h = 0, that is, the original system is without any field.
Then ξ is given by

ξ(T0) = qξ(qy1T0).

The solution of this functional equation can be obtained by giving a special
value to q which is arbitrary. Putting q = T

−1/y1
0 , it is found that

ξ(T0) = T
−1/y1
0 ξ(1) = T−ν0 ξ(1).

Thus, the parameter y1 can be identified as ν−1 where ν is the correlation
length exponent. This relation also shows that

ξ(T ) = ξ(T0) ∝ exp(+4Jν/T ).

Thus, for the 1-D Ising model, an exponential divergence is obtained, as com-
pared to the usual power law divergence.

Eq.(4.6) for free energy (per spin) becomes

F (T0, h) = q−1F (T ′0, h
′) = q−1F (qy1T0, q

y2h),
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where the term c′ is omitted. The effect of that term will be discussed later.
Once again, the choice q = T

−1/y1
0 yields

F (T0, h) = (T0)1/y1F
(
1,

h

T
y2/y1
0

)
,

which is of the scaling form if

1

y1

= 2− α, y2

y1

= ∆.

The detailed analysis of this model has, thus, shown that divergence of phys-
ical quantities and scaling behaviour can be understood in terms of the RG
approach. The RG transformation sets the system in motion in the parame-
ter space and so this approach recasts the problem of critical behaviour as a
dynamical problem.

4.2 General Renormalization Group

A specific model of a system is defined by a hamiltonian which contains several
parameters like a2, a4, c and h in the Landau-Ginzburg hamiltonian. Thus a
parameter space is imagined and the state of the system is represented as
a point in this space. The RG approach is based on the observation that
two models of critical behaviour are equivalent if they differ only in the short
length scale variations of microscopic variables (like spin variables). So one
starts by investigating how the parameters in a coarse grained model are
related to those in a detailed model. If the coarse grained model has the
same structure of the detailed model, then it is also represented by a point
in the parameter space. As explained in the example of 1-D Ising model, the
RG transformation takes a point in the parameter space to another point.
This picture then naturally leads to the concept of a fixed point in parameter
space, the hamiltonian corresponding to the fixed point being invariant under
the RG transformation. With a slight generalization of the concepts used
in the example of 1-D Ising model, the scaling theory and universality of
critical phenomena can be understood in terms of the properties of the RG
transformation near a fixed point. The three steps involved in a general RG
transformation are discussed below.

4.2.1 Reduction of Degrees of Freedom

In general, a coarse grained model is obtained by averaging the microscopic
variables over a certain local region. Therefore, coarse graining leads to a
reduction in the number of degrees of freedom. Recall that the cell averag-
ing procedure, introduced by Kadanoff, led to the scaling hypotheses. Now,
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consider a rigorous method to obtain the cell hamiltonian. This method was
explained earlier, but is repeated here with slight generalization. The cell spin
variable is defined as the average of the spins belonging to a cell, that is

sµx
′′ =

1

qd
<
∑
x∈c

sµc >,

where the symbol
∑

x∈c indicates that the summation is over all lattice points
x belonging to a cell of size qa0, where a0 is the lattice spacing. Note that each
cell contains qd spins, and the index µ denotes the spin component. For de-
scribing the spin variations over distances larger than qa0, these cell averaged
variables are expected to be adequate. However, they can not describe spin
variations over distances smaller than qa0. This feature is similar to that in an
Ising model where the cut-off length for spin variations is the lattice spacing
a0. Similarly, the spatially discrete Landau-Ginzburg model hamiltonian

H

T
= bd

∑
x

[
a0 + a2s

2
x + a4s

4
x − hs1

x −
c

b2

∑
y

(sx − sy)2
]
,

or its continuous version

H[s]

T
=
∫
V

(
a0 + a2s

2(x) + a4s
4(x)− hs1(x) + c[∇s(x)]2

)
dx,

accounts for spin variations over length scales larger than a cut-off value b =
2π/Λ.

Since the cell spin is defined as a sum over the spins in a cell, the probability
distribution of the cell variables is

P ′′[s′′] = <
∏
µ x

δ
(
sµx
′′ − q−d

∑
x∈c

sµx
)
>

=
1

Z

∫
exp

(
− H[s]

T

)∏
µ x

δ
(
sµx
′′ − q−d

∑
x∈c

sµx
)∏
µ x

dsµx,

where H[s] and Z are respectively the hamiltonian and partition function of
the Ising model or the L-G model. In writing this equation, the definition of
the distribution of sum of random variables has been used. The hamiltonian
H ′′[s′′] and partition function Z ′′ of the cell model are defined as

P ′′[s′′] =
1

Z ′′
exp

(
− H ′′[s′′]

T

)
.

Note that Z ′′ = Z. Equivalently, H ′′[s′′] can be defined as

exp
(
− H ′′[s′′]

T

)
=
∫

exp
(
− H[s]

T

)∏
µ x

δ
(
sµx
′′ − q−d

∑
x∈c

sµx
)∏
µ x

dsµx.
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The two probability distributions P [s] and P ′′[s′′] or the hamiltonians H[s]
and H ′′[s′′] are equivalent as far as spin variations over distances greater than
qa0 are concerned. Obtaining H ′′[s′′] from a given H[s] is called a Kadanoff
transformation Kq. In a symbolic manner, it may be written as

H ′′[s′′] = KqH[s],

where q is the cell size parameter. With q = 1, one gets the identity transfor-
mation K1. If another Kadanoff transformation Kq′ is performed, one gets

Kq′H
′′[s′′] = Kq′KqH[s].

Two transformations lead to a cell size parameter q′q. Therefore one can also
write

Kq′H
′′[s′′] = Kq′ qH[s].

Thus the transformations {Kq} have the property

Kq′Kq = Kq′q.

This defines the multiplication law for the operators {Kq}. The operator Kq

does not have an inverse since H can not be obtained from H ′′. Therefore,
the operators {Kq} are said to form a semigroup. Note that the Kadanoff
transformation can not produce any singular behaviour in the thermodynamic
quantities since the long wave length variations of spins are unaltered by it.

For the spatially continuous L-G model, H[s] can be expressed in terms
of the Fourier amplitudes sik of spin component si(x). Now, si(x) contains
Fourier modes with k in 0 to Λ = 2π/b or wave length from b to ∞. The
aim is to introduce a coarse graining so that the cut-off wavelength is qb or
the cut-off value of k is Λ/q. Thus, P ′′[s′′] is obtained by integrating out the
Fourier amplitudes with k in Λ/q to Λ in P [s]. That is, the hamiltonian H ′′[s′′]
is given by

exp
(
− H ′′[s′′]

T

)
=
∫

exp
(
− H[s]

T

) ∏
i Λ/q<k≤Λ

dsik.

Then, H ′′[s′′] (and hence P ′′[s′′]) will contain Fourier amplitudes with k ≤ Λ/q.
Thus it describes spin variations with a wave length greater than qb. That is,
s′′i (x) can be expressed as

s′′i (x) =
1

Ld/2
∑
k≤Λ/q

exp(ık · x)sik.

The Kadanoff transformation so defined can be symbolically written as

H ′′[sik, k ≤ Λ/q] = KqH[sik, k ≤ Λ].
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4.2.2 Spatial Rescaling

The L-G hamiltonian is characterized in terms of the parameter set µ =
(a0, a2, a4, c). So a particular point in the µ-space (parameter space) repre-
sents a certain hamiltonian H. The Kadanoff transformation Kq yields a new
hamiltonian H ′′. It is hoped that H ′′ can also be written in the L-G form and
hence can be represented by a new point µ′′ = (a′′0, a

′′
2, a
′′
4, c
′′) in the µ-space.

There is a basic length scale b = 2π/Λ associated with H. The length scale
associated with H ′′ is qb. The parameter set µ = (a0, a2, a4, c) of H represents
the details of the system over the basic length scale b just as the parameter
k = J/T of the Ising model is characteristic of the details of the system over
the lattice unit a0. To compare the two parameter sets µ and µ′′, it is necessary
to make both of them represent the details of the system over the same basic
length scale. So for the coarse grained model H ′′, the length unit is taken to be
q times the unit of length in the original model H. That is, the coarse grained
system should be viewed with a coarser length unit. Due to this change of
length unit, physical quantities acquire new numerical values. For example,
the spatial coordinate x is changed to x′ = x/q. Similarly, the size of the
system L changes to L′ = L/q. The spin variable s′′i (x) in H ′′ gets altered to
si(x

′). The volume integral
∫
V dx is transformed to

∫
V ′ dx′ = q−d

∫
V dx. The

wave vector k becomes k′ = qk. Thus the spin variable s′′i (x), in H ′′, should
be replaced by si(x

′) before making a comparison of the two parameter sets.
The Fourier component sik was defined as

sik =
1

Ld/2

∫
V

exp(−ık · x)s′′i (x)dx.

With the coarse unit, one finds

sik →
qd

Ld/2qd/2

∫
V ′

exp(−ıqk · x′)si(x′)dx′ = qd/2si qk.

That is, all Fourier components sik (k ≤ Λ/q) in H ′′ should be replaced by
qd/2sik′ where k′ = qk. Together with this change, all functions which depend
on k should be expressed in terms of k′ and factors like Ld should be expressed
in terms of L′ = L/q.

4.2.3 Rescaling of Spin Variables

The aim of employing the coarse graining operation is to exploit the RG trans-
formation as a symmetry transformation for critical phenomena. Therefore,
it becomes necessary to locate a fixed point of the transformation. As shown
below, it is necessary to rescale the magnitude of the spin variables in the
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coarse grained model so that a proper fixed point can be isolated. That is, it
becomes necessary to replace si(x

′) or sik′ with α(q)s(x′) or α(q)sik′ . Thus,
after the reduction of degrees of freedom, the replacement to be made is

s′′i (x)→ α(q)si(x
′), x′ = x/q.

In terms of Fourier amplitudes, this means

sik → α(q)qd/2sik′ , k′ = qk.

The parameter α(q) is to be determined such that a proper fixed point of the
transformation can be identified. For the example of 1−D Ising model, α(q)
was unity.

The three steps described can be symbolically represented as

H ′′[s′′] = KqH[s],

H ′[s] = H ′′[s′′]

s′′(x) → α(q)s(x′), x′ = x/q.

In the discrete model, the combined operation is

exp
(
− H ′[s]

T

)
=
∫

exp
(
− H[s]

T

) ∏
µ x′

δ
(
α(q)sµx′ − q−d

∑
x∈c

sµx
)∏
µ x

dsµx.

In the continuum model, using Fourier amplitudes, the combined operation
becomes

exp
(
− H ′[{sik′}]

T

)
=
[ ∫

exp
(
− H[{sik}]

T

) ∏
i Λ/q<k≤Λ

dsik
]
,

together with the replacement

sik → α(q)qd/2sik′ ,k′ = qk.

In the µ-space, RG transformation takes the point µ to µ′ and is represented
as

µ′ = Rqµ,

where Rq denotes the three steps described above.
Just as Kq, Rq also should satisfy the multiplication law Rq′Rq = Rq′q.

This is required since one can reach the point µ′′ from µ in two equivalent ways,
µ′′ = Rq′µ

′ = Rq′Rqµ and µ′′ = Rq′qµ. The first involves repeated coarse
graining over cell sizes qb and q′b while the second consists of a single coarse
graining operation over the cell size q′qb. Since the results of the two ways must
be the same, the multiplication law for Rq is a necessary condition. In terms
of Fourier amplitudes, one notes that Rq′Rq involves repeated elimination of
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modes with k in Λ/q to Λ and then in Λ/q′q to Λ/q which amounts to applying
a single transformation Rq′q. This requirement puts a restriction on the scale
parameter α(q),

α(q′)α(q) = α(q′q).

Therefore, the parameter α(q) should be of the form

α(q) = qa,

where a is some number to be adjusted to isolate a fixed point of the RG
transformation Rq. For the sake of clarifying the ideas, the three steps are
applied to the Gaussian model in the following section.

4.3 Gaussian Model - RG Steps

The hamiltonian of the Gaussian model is

H[s]

T
=
∫
V

{a2s
2(x)− hs1(x) + c[∇s(x)]2}dx.

The parameter space is µ = (a2, c, h). In terms of Fourier components, H/T
is

H[s]

T
=
∑
ik≤Λ

(a2 + ck2)|sik|2 − Ld/2hs10.

The first step of RG yields

exp
(
− H ′′[s′′]

T

)
=

∫
exp

[
−

∑
i k≤Λ

(a2 + ck2)|sik|2 + Ld/2hs10

] ∏
i Λ/q<k≤Λ

dsik

= exp
[
−

∑
i k≤Λ/q

(a2 + ck2)|sik|2 + Ld/2hs10

]
×

∫
exp

[
−

∑
i Λ/q<k≤Λ

(a2 + ck2)|sik|
] ∏
i Λ/q<k≤Λ

dsik,

The last integral, (I) can be evaluated as follows. Let the region defined as
Λ/q < k ≤ Λ be divided into two symmetric parts and ∆ denote one of them.
Then

I =
∫

exp
[
−

∑
i k∈2∆

(a2 + ck2)|sik|2
] ∏
i k∈2∆

dsik

= 2
∫

exp
[
− 2

∑
i k∈∆

(a2 + ck2)(sR 2
ik + sI 2

ik )
] ∏
i k∈∆

dsRikds
I
ik

=
∏

i k∈∆

[
π

a2 + ck2
]1/2[

π

a2 + ck2
]1/2 =

[ ∏
k≤Λ/q

π

a2 + ck2

]n/2
.
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Therefore H ′′ is given by

1

T
H ′′[{sik}, k ≤ Λ/q] =

∑
i k≤Λ/q

(a2 + ck2)|sik|2 − Ld/2hs10 + A,

where A is a constant and

A = −n
2

∑
Λ/q<k≤Λ

ln
( π

a2 + ck2

)
.

Thus, the elimination of modes with k in Λ/q to Λ yields the hamiltonian H ′′

in the Gaussian form, but with an additional constant term A. This term is
the contribution to the total free energy from the eliminated modes.

The second step is to replace sik with qa+d/2sik′ where k′ = qk. Thus, H ′

is obtained from H ′′. The parameters k2 and L also should be expressed in
terms of k′ and L′, i.e. k2 = q−2k′ 2 and L = qL′. Thus one obtains

H ′

T
=

∑
i k′≤Λ

(a2 + cq−2k′ 2)q2a+d|sik′ |2 − (qL′)d/2hqa+d/2s10 + A,

which can be written as

H ′

T
=

∑
i k′≤Λ

(a′2 + c′k′ 2)|sik′ |2 − L′ d/2h′s10 + A,

where the new parameter set µ′ = (a′2, c
′, h′) is given by

a′2 = a2q
2a+d,

c′ = cq2a+d−2,

h′ = hqa+d.

These transformations are symbolically represented as µ′ = Rqµ. For the
Gaussian model, Rq is a diagonal matrix. The parameter α(q) = qa is to be
adjusted to find proper fixed points (defined as µ∗ = Rqµ

∗) of the transfor-
mation. The choice a = 0 leads to the fixed point values a∗2 = c∗ = h∗ = 0
(for d 6= 2). Another choice is a = (2− d)/2 which yields a∗2 = h∗ = 0 and c∗

is arbitrary. Thus the fixed point hamiltonian is

H∗

T
= c∗

∫
(∇s)2dx.

Yet another choice is a = −d/2 so that c∗ = h∗ = 0, a∗2 is arbitrary and hence

H∗

T
= a∗2

∫
s2dx.

This fixed point hamiltonian will not show any spatial correlation since the
gradient term is absent. Later, it will be shown that the second choice yields
the exponents of Gaussian model.
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4.4 Few Points about RG

Some of the important points regarding the RG transformation for the L-G
model are discussed below.

(i) The averages calculated with the distributions

P =
1

Z
exp(−H

T
),

and

P ′ =
1

Z
exp(−H

′

T
),

are equivalent. That is,

< si(x) >P= α(q) < si(x
′) >P ′= qa < si(x

′) >P ′ ,x′ = x/q.

Similarly the spatial correlation functions computed with P and P ′ are related
as

< si(x) sj(x + r) >P= q2a < si(x
′) sj(x

′ + r′) >P ′ , r′ = r/q.

The Fourier transform of the correlation function (for n = 1) is

G(k, µ) =< |sk|2 >P .

Here and in what follows, the parameter µ in the argument denotes the de-
pendence of G (and other averages) on H. The RG transformation yields
µ′ = Rqµ and sk is to be replaced by qa+d/2sk′ where k′ = qk. Therefore one
gets,

G(k, µ) = q2a+dG(qk, µ′).

(ii) The transformation for the field term can be obtained easily. Note that
the L-G hamiltonian can be written as

H[s]

T
=
H0[s]

T
− Ld/2hs10,

where H0 is an even functional of s(x), i.e. changing s(x) to −s(x) leaves H0

unchanged. In terms of Fourier components sik , this means that if every sik
is replaced by −sik , then H0[{sik}] is unchanged. The first step of RG defines
the new hamiltonian H ′′ as

exp
(
− H ′′[s′′]

T

)
=

∫ ∏
i Λ/q<k≤Λ

dsik exp
(
− H0[s]

T
+ Ld/2hs10

)

= exp(Ld/2hs10) exp
(
− H ′′0 [{sik}]

T

)
, k ≤ Λ/q.
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Note that H ′′0 is unaltered by changing sik to −sik (k ≤ Λ/q). The second
and third steps (yielding H ′ from H ′′), then, amounts to replacing sik with
qa+d/2sik′ where k′ = qk. Thus H ′ becomes

1

T
H ′[{sik′}, k′ ≤ Λ] =

1

T
H ′0[{sik′}, k′ ≤ Λ]− L′ d/2hqa+ds10.

Thus the magnetic field term is altered as

h′ = hqa+d.

Therefore, it is only necessary to work out the form of H ′′0 for implementing
RG for the L-G model.

(iii) In discussing the RG transformation, it was assumed that H ′/T can
be written i. the same form as H/T . But for the appearance of a constant
term (which is the contribution to the free energy from the eliminated modes),
this was found to be possible for the 1-D Ising model and the Gaussian model.
However, it will be shown later that if one starts with the L-G hamiltonian, the
same form is not retained when degrees of freedom are reduced. In fact, it is
found that many additional terms containing s6, s8, (∇2s)2, etc. are generated
in the process. This feature appears to create a serious difficulty in using the
RG ideas for the L-G model. A way to circumvent this problem is to start
with a rather general hamiltonian. For example, one may consider

H[s]

T
=

∫
V

[
a0 + a2s

2(x) + a4s
4(x) + a6s

6(x) + · · · − hs1(x)

+ [∇s(x)]2{c0 + c2s
2(x) + c4s

4(x) + c6s
6(x) + · · ·}

+ [∇2s(x)]2{d0 + d2s
2(x) + d4s

4(x) + d6s
6(x) + · · ·}+ · · ·

]
dx.

where, but for the magnetic field term, the hamiltonian is an even functional
of s(x) . Then the parameter space

µ = (h, {aj}, {cj}, {dj}, · · ·), j = 0, 1, · · · ,

is infinite dimensional and this is one of the difficulties in implementing the
RG procedure. But as shown later, µ = (h, a0, a2) is adequate for d ≥ 4, while
for d < 4 it is necessary to consider µ = (h, a0, a2, a4).

(iv) For spatially discrete models, the parameter q has to be an integer.
Thus, one may take q = 2 and then, using the property

Rq′Rq = Rq′q,

obtain the general Rq with q = 2l as

Rq = R2l = [R2]l.

For integrating out the Fourier components, q can be any positive number.
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4.5 Fixed Point and Critical Surface

The RG transformation, symbolically written as µ′ = Rqµ, means the trans-
formation of the parameters of the hamiltonian

h′ = hqa+d.

a′α = uα({aβ}, {cβ}, {dβ}, · · ·),
c′α = vα({aβ}, {cβ}, {dβ}, · · ·),
d′α = wα({aβ}, {cβ}, {dβ}, · · ·), etc.

The fixed point of the transformation µ∗ is defined as

µ∗ = Rqµ
∗,

for all q . Thus µ∗ is an infinite dimensional vector given by

µ∗ = (0, {a∗β}, {c∗β}, {d∗β}, · · ·),

where the entry 0 is the fixed point value of the field. For the 1-D Ising
model and the Gaussian model, the fixed points have been obtained. The
existence of a fixed point for any particular (nontrivial) model has not been
proved. However, certain fixed points can be isolated by an approximate
implementation of RG transformation.

A critical surface in the parameter space is defined as the surface (or set of
points) formed by all µ’s such that

lim
q→∞

Rqµ = µ∗.

In the neighborhood of a fixed point, one may write

µ = µ∗ + δµ,

µ′ = µ∗ + δµ′,

and define a linearised RG transformation

δµ′ = R̃qδµ.

If Rq and µ∗ are known, R̃q can be obtained. In fact, the explicit form of the
linearised transformation is

h′ = hqa+d.

δa′α =
∑
β

(∂uα
∂aβ

)
∗
δaβ +

(∂uα
∂cβ

)
∗
δcβ, · · · , etc.

Therefore, R̃q has a block structure

R̃q =

(
qa+d ~0
~0 R̃0q

)
,
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where R̃0q represents the block corresponding to the even part of the hamil-
tonian. The eigenvalues (ρj) and the eigenvectors (ej) of R̃q are defined as

R̃qej = ρjej.

The eigenvalues depend on the parameter q. If the µ space is infinite di-
mensional, j is infinite in number. Due to the block structure, one of the
eigenvalues is ρh = qa+d. A linear space can be formed in the vicinity of the
fixed point µ∗. Assuming that the eigenvectors form a basis for this linear
space, any arbitrary deviation δµ = µ− µ∗ can be expressed as

δµ = heh +
∑
j

tjej.

Then δµ′ becomes

δµ′ = µ′ − µ∗ = R̃qδµ,

= hρh(q)eh +
∑
j

tjρj(q)ej.

A second application of R̃q yields

δµ′′ = R̃qδµ
′ = R̃qR̃qδµ = R̃q2δµ.

In obtaining the last equality, the multiplication property of Rq and hence
that of R̃q, has been used. In terms of eigenvalues, this property implies

[ρj(q)]
2 = ρj(q

2) , j = 1, 2, · · · .

Therefore, the q dependence of the eigenvalues should be of the form

ρj(q) = qyj , j = 1, 2, · · · ,

where yj is independent of q. Note that the eigenvalue ρh has this power law
dependence on q. Now, assume that ρj < 1, for j > j0, i.e. yj < 0 for j > j0.
Further, let µc be a point in the vicinity of µ∗ so that

µc = µ∗ + δµ = µ∗ +
∑
j>j0

tjej.

On repeatedly applying R̃q l times, one gets

[R̃q]
lµc = µ∗ +

∑
j>j0

tjq
lyjej.

Therefore, µc → µ∗ as l → ∞. In other words, any µ which lies in the sub-
space spanned by ej, j > j0, approaches µ∗ when R̃q is applied repeatedly.
Thus, the critical surface associated with µ∗ is simply this sub-space.
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4.6 Critical Exponents

For relating the properties of Rq with the critical exponents, consider the
ferromagnetic critical point. The correlation lengths of the original system
and the renormalized system are related as

ξ(µ) = qξ(µ′).

The parameter µ indicates the dependence of ξ on the parameters of H. First,
consider the case of no magnetic field, i.e. h = 0. Then the parameters of H
depend only on temperature and the dependence is analytic. For µ = µ∗, one
gets

ξ(µ∗) = qξ(µ∗).

Therefore, ξ(µ∗) = 0 or∞. That is, for the system defined by the hamiltonian
corresponding to µ∗, the correlation length is either 0 or infinity. The latter
case is of importance since the correlation length of the critical system is
infinity.

Now, let µ = µc be a point (near µ∗) on the critical surface. Then

ξ(µc) = qξ(µ′c) = qξ(Rqµc) = qξ
(
µ∗ + R̃qδµc

)
.

If a large value of q is taken, then R̃qδµc ≈ 0. Then one finds that

ξ(µc) = qξ(µ∗) =∞.

Thus, systems represented by points on the critical surface also have infinite
correlation lengths. This observation leads to a fundamental hypothesis that
a critical system is represented by a point on the critical surface. For the
ferromagnetic case, all the parameters represented by µc depend only on Tc
since h = 0 on the critical surface.

Another hypothesis regarding the eigenvalues of R̃q is that there are only
two eigenvalues, ρ1 and ρh, which are greater than unity. That is, y1 > 0,
yh > 0 and yj < 0 for j ≥ 2. This hypothesis is to be tested against RG
calculations for ferromagnetic models. With this hypothesis, the exponents
can be related to ρ1 and the parameter a in α(q) = qa.

4.6.1 Correlation Length Exponent ν

The exponent ν, defined as ξ ∼ |T − Tc|−ν , can be related to y1 as follows.
First of all, let h = 0. Consider a point µ close to µ∗ but not on the critical
surface. The deviation of µ from µ∗ can be expressed as

µ = µ∗ + δµ = µ∗ + t1e1 +
∑
j≥2

tjej.
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Application of the RG transformation l times yields a point µ(l)

µ(l) = µ∗ + δµl = µ∗ + t1q
ly1e1 +

∑
j≥2

tjq
lyjej.

For a sufficiently large value of l, this reduces to

µ(l) = µ∗ + t1q
ly1e1 +O(qly2),

since yj < 0 for j ≥ 2 and they can be ordered as |y2| ≤ |y3| ≤ |y4| etc. The
correlation lengths of the systems corresponding to µ and µ(l) are related by

ξ(µ) = qlξ(µ(l)).

Then, for a large value of l, one gets

ξ(µ) = qlξ
(
µ∗ + t1q

ly1e1 +O(qly2)
)
.

The initial point µ can be changed by changing temperature T . That is, the
expansion coefficients tj are functions of T . The components of µ, and hence
{tj}, are analytic functions of T . Note that a2 = a′2(T − Tc). When t1 = 0, µ
is on the critical surface. Therefore, a Taylor expansion of t1 around Tc yields

t1(T ) = A1(T − Tc) + A2(T − Tc)2 + · · · .

where A1 etc. are constants. It is assumed that A1 6= 0. Thus for a large
value of l and small ∆T = T − Tc, ξ(µ) is given by

ξ(µ) = qlξ
(
µ∗ + A1∆Tqly1e1 +O(∆T )2 +O(qly2)

)
.

This relation should be true for an arbitrary value of q and large l and hence
in particular for ql = |∆T |−1/y1 . Thus

ξ(µ) = |∆T |−1/y1ξ
(
µ∗ ± A1e1 +O(∆T )2 +O(∆T−y2/y1)

)
,

which shows that the temperature dependence of ξ for small ∆T is like |∆T |−ν
with ν = 1/y1. Thus, the calculation of the eigenvalue ρ1(q) of the linearised
RG transformation provides a method to obtain the exponent ν since they are
related as

ν =
ln(q)

ln(ρ1)
=

1

y1

.

4.6.2 Correlation Function Exponent η

There are four relations (scaling laws) among the six exponents and hence it
is enough to calculate any two of them. Having found an expression for ν,
a relation for η can be derived as follows. A factor α(q) was introduced to
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adjust the magnitude of the Fourier amplitudes in the third step of RG. Using
the multiplicative property of Rq, this parameter was shown to have a power
law dependence on q, namely, α(q) = qa. It was also stressed that the value
of a has to be chosen so as to find an appropriate fixed point for Rq. For the
Gaussian model, it was shown that different fixed points can be obtained by
giving different values to a. Let a point µ′ = R̃qµ, be generated starting from
µ. The Fourier transform of the correlation functions of the two systems are
related as

G(k, µ) = q2a+dG(qk, R̃qµ).

Iterating this equation l times, one obtains

G(k, µ) = ql(2a+d)G(qlk, [R̃q]
lµ).

Let µc = µ∗ + δµc be a point on the critical surface. Hence, this point corre-
sponds to h = 0 and T = Tc. Since δµc has no projection on e1 and eh, one
knows that

[R̃q]
lµc = µ∗ +

∑
j≥2

tjq
lyjej = µ∗ +O(qly2),

for a large value of l. Therefore, G(k, µc) is given by

G(k, µc) = ql(2a+d)G
(
qlk, µ∗ +O(qly2)

)
, l � 1.

Since q is arbitrary, it can be chosen as ql = k−1 for small k. Since µc
corresponds to Tc, one gets

G(k, Tc) = k−(2a+d)G
(
± 1, µ∗ +O(|k|−y2)

)
,

for small k .But it is known that G(k, Tc) varies as k−2+η where η is the
correlation function exponent. Thus η and a are related as

a =
1

2
(2− η − d).

Therefore, the value of a required to find an appropriate fixed point, yields η.
The replacement of the Fourier amplitude sik in the second and third steps of
RG can now be written as

sik → qa+d/2sik′ = s1−η/2sik′ ,k′ = qk.

Thus, a method to obtain two exponents can be devised within the framework
of RG. What is remaining to be shown is that the scaling forms of correlation
function and free energy density can also be derived within this framework.
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4.7 Scaling Form of Correlation Function

To obtain the full scaling form of correlation function, it is necessary to include
the field parameter h in µ. The functional equation for G(k, µ) is

G(k, µ) = ql(2−η)G(qlk, [R̃q]
lµ),

where the relation 2a + d = 2 − η has been used. Now, consider a point µ
close to µ∗, but not on the critical surface. Then µ can be written as

µ = µ∗ + heh + t1e1 +
∑
j≥2

tjej.

Repeated application (l times) of R̃q on µ yields

[R̃q]
lµ = µ∗ + hqlyheh + t1q

ly1e1 +O(qly2), l� 1 ,

where yh = a+ d. Therefore G(k, µ) satisfies

G(k, µ) = ql(2−η)G
(
qlk, µ∗ + hqlyheh + t1q

ly1e1 +O(qly2)
)
,

for a large value of l. Now, using

t1(T ) = A1∆T + A2∆T 2 + · · · , ∆T = T − Tc,

and choosing ql = |∆T |−1/y1 one obtains

G(k, µ) = |∆T |−(2−η)/y1G
(
|∆T |−1/y1k, µ∗ + h|∆T |−yh/y1eh

± A1e1 +O(∆T )2 +O(|∆T |−y2/y1)
)
,

for small ∆T . Since 1/y1 = ν, this is of the form

G(k, µ) = |∆T |−ν(2−η)G
( k

|∆T |ν
, µ∗ +

h

|∆T |∆
eh ± A1e1

)
= k−2+η

( k

|∆T |ν
)2−η

G
( k

|∆T |ν
, µ∗ +

h

|∆T |∆
eh ± A1e1

)
= k−2+ηD±

( k

|∆T |ν
,

h

|∆T |∆
)
,

where the ± sign stands for ∆T > 0 and ∆T < 0 respectively, and

∆ =
yh
y1

=
ν

2
(2− η + d).

Thus the scaling form for correlation function emerges in a nice way.



Renormalization Group Theory 97

4.8 Scaling Form of Free Energy Density

Before developing a detailed analysis leading to the scaling form of free energy
density, consider a simplified derivation. The free energy densities of the
original (represented by µ) and renormalized systems (represented by µ′) can
be related as

F (µ) = q−dF (µ′).

Such a relation was derived (with d = 1) for the 1-D Ising model. The factor
q−d arises from the change of volume V ′ = V q−d accompanying spatial rescal-
ing. The above relation is incomplete since an additive term, generated by the
partial elimination of degrees of freedom, is not accounted in it. Omitting this
contribution (see below), one obtains (as in the case of correlation function)

F (µ) = q−ldF
(
µ∗ + hqlyheh + t1q

ly1e1 +O(qly2)
)
, l� 1.

Now choose ql = |∆T |−1/y1 and use the expansion for t1 to obtain

F (µ) = |∆T |d/y1F
(
µ∗ +

h

|∆T |∆
eh ± A1e1 +O(∆T )2 +O(|∆T |y2/y1)

)
,

where ∆ = yh/y1. Writing d/y1 = 2 − α, or α = 2 − νd, the scaling form for
F (µ) reduces to

F (µ) = |∆T |2−αY±
( h

|∆T |∆
)
.

This derivation also yields the hyperscaling relation. However, it was noted
earlier that the exponents of Gaussian approximation do not satisfy the hy-
perscaling law except for d < 4. This point will be discussed later. The other
scaling relations can be obtained using the functional forms of F and G.

A more detailed derivation of the free energy density scaling ansatz is as
follows. Since the additive constant term is unimportant in the original hamil-
tonian, let a0 = 0. Then H[s] = 0 for s = 0. But it is known that the RG
transformation generates an additive constant to the new hamiltonian. This
term arises as the contribution of the eliminated modes to the total free energy.
Writing out this contribution explicitly, the RG transformation is

exp
(
− H ′[{sik′}]

T
− A(µ)

Ld

T

)
=
∫

exp
(
− H[{sik}]

T

) ∏
i Λ/q<k≤Λ

dsik,

with sik → sik′qa+d/2. The constant A(µ) is the free energy density contributed
by modes with k in Λ/q to Λ. In this definition, H ′[s] = 0 when s = 0. The
free energy densities, F (µ) and F (µ′), of the old and new hamiltonians are
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defined as

exp
(
− F (µ)

T
Ld
)

=
∫

exp(−H
T

)
∏

i k≤Λ

dsik ,

exp
(
− F (µ′)

T
L′d
)

=
∫

exp(−H
′

T
)
∏

i k′≤Λ

dsik′ .

Note that the additive constant generated by RG is to be separated so that
the free energy density is the same function of the parameter sets µ or µ′. In
the new hamiltonian, the volume factor is L′d = q−dLd because the unit of
length is q times the old unit. The equation for F (µ) can be rewritten as

exp
(
− F (µ)

T
Ld
)

=
∫ ∏

i k≤Λ/q

dsik

∫
exp(−H

T
)

∏
i Λ/q<k≤Λ

dsik.

For modes with k ≤ Λ/q, the replacement sik → sik′q1−η/2,k′ = qk yields

exp
(
− F (µ)

T
Ld
)

= (
∏

i k≤Λ/q

q1−η/2)
∫ ∏

i k′≤Λ

dsik′

∫
exp(−H

T
)

∏
i Λ/q<k≤Λ

dsik

→ (
∏

i k≤Λ/q

q1−η/2)
∫ ∏

i k′≤Λ

dsik′ exp
(
− 1

T
H ′[sik′ ]− A(µ)

T
Ld
)
.

In getting this relation, the definition of H ′[sik′ ]/T has been used. Using the
definition of F (µ′), one gets

exp
(
− F (µ)

T
Ld
)

= exp
[
(1− η/2) ln(q)

∑
i k≤Λ/q

1
]

exp
(
− F (µ′)

T
L′d − A(µ)

T
Ld
)
.

Thus F (µ) and F (µ′) are related as

F (µ) = q−dF (µ′) + A(µ)− T

Ld
(1− η/2) ln(q)n

∑
k≤Λ/q

1.

The last term has come due to the change of unit of length and the change
in the magnitude of the remaining Fourier amplitudes. This, as well as the
term A(µ), were not considered earlier. Since the density of points in k-space
is (L/2π)d, ∑

k≤Λ/q

1 = (
Λ

q
)−d(

L

2π
)d.
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Therefore,
F (µ) = q−dF (µ′) +X(µ, q),

where the additive term X(µ, q) is

X(µ, q) = A− T (1− η/2) ln(q)nΛ−d(
q

2π
)d.

Note that X(µ, q) = 0 for q = 1. Then, for q ≈ 1 or (q − 1) a small number,
one can write

X(µ, q) ≈ [
∂X

∂s
]q=1(q − 1) = X ′(µ)(q − 1).

Thus, the relation between F (µ) and F (µ′) is

F (µ) = q−dF (Rqµ) +X ′(µ)(q − 1), q ≈ 1.

Iteration of this equation l times yields

F (µ) = q−ldF ([Rq]
lµ) +

l−1∑
m=0

q−mdX ′([Rq]
mµ)(q − 1), q ≈ 1. (4.10)

For a large value of l, and hence a large value of b = ql, but for q close to 1,
the summation can be approximated by an integral. Putting qm = b′ so that
qm+1 = b′ + db′ or qm(q − 1) = db′, one finds

F (µ) = b−dF (Rbµ) +

b∫
1

b′ −dX ′(Rb′µ)
db′

b′
.

In this equation, the relation (Rq)
lµ = Rqlµ has been used. The integral can

be split into two parts, one from 1 to b0 and the other from b0 to b. Then,
assuming that 1� b0 � b, F (µ) is given by

F (µ) = b−dF (Rbµ) +

b0∫
1

(· · ·) +

b∫
b0

(· · ·) = Fr + Fs,

where Fs (singular part) is defined as

Fs(µ) = b−dF (Rbµ) +

b∫
b0

b′ −dX ′(Rb′µ)
db′

b′
.

The term Fr (regular part) is not expected to give any singular behaviour.
When µ is close to µ∗, but not on the critical surface, Rbµ (for large b) can
be written as

Rbµ = µ∗ + hbyheh + t1b
y1e1 +O(by2).
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Note that b′ inside the integral in Fs is large since 1� b0. Therefore,

Fs(µ) = b−dF
(
µ∗ + hbyheh + t1b

y1e1 +O(by2)
)

+

b∫
b0

b′ −dX ′
(
µ∗ + hb′ yheh + t1b

′ y1e1 +O(b′ y2
)db′
b′
.

Now change the variable b′ to bz. Then, the lower limit for z is b0/b ≈ 0 since
b is large compared to b0. Thus for large b, one gets

Fs(µ) = b−dF
(
µ∗ + hbyheh + t1b

y1e1

)
+ b−d

1∫
0

z−dX ′
(
µ∗ + hbyhzyheh + t1b

y1zy1e1

)dz
z
.

Now, use the expansion, t1(T ) ≈ A1∆T, for T close to Tc, and further choose
b = |∆T |−1/y1 . Therefore Fs(µ) reduces to

Fs(µ) = |∆T |d/y1F
(
µ∗ +

h

|∆T |yh/y1
eh ± A1e1

)

+ |∆T |d/y1
1∫

0

z−dX ′
(
µ∗ +

h

|∆T |yh/y1
zyheh ± A1z

y1e1

)dz
z
.

This expression is clearly of the scaling form

Fs(µ) = |∆T |2−αY±
( h

|∆T |∆
)
,

where 2− α = d/y1 and ∆ = yh/y1.
The above analysis leading to the scaling form of free energy density shows

two important points. First of all, it is found that the contribution X(µ, q)
also has the scaling form when ∆T is small. Such a term does not arise in the
derivation of the scaling form of correlation function since the contribution
to G(k) for small k arises purely from the long wavelength fluctuations while
fluctuations at all wavelengths contribute to the free energy density. The
second point is that only a part of the free energy density (which was called
Fs) has the scaling behaviour.

4.8.1 Scaling Form in Finite Systems

In the previous chapter, a scaling form for the free energy density in a finite
size system was introduced. This ansatz also can be derived using the above
analysis. In a finite system Eq.(4.10) should be written as

F (µ, L) = q−ldF ([Rq]
lµ, q−lL) +

l−1∑
m=0

q−mdX ′([Rq]
mµ)(q − 1), q ≈ 1,
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where the dependence of F on the linear size L is indicated explicitly. The
application of the RG transformation (l times) includes a spatial rescaling
by a factor ql and so the linear size of the renormalized system is q−lL as
indicated on the right. The analysis leading to the scaling form for Fs can
now be repeated to obtain

Fs(µ, L) = b−dF
(
µ∗ + hbyheh + A1∆Tby1e1, b

−1L
)

+ b−d
1∫

0

z−dX ′
(
µ∗ + hbyhzyheh + A1∆Tby1zy1e1

)dz
z
,

where b = ql. In this expression, the size parameter L appears in the same
way as the field and temperature variables and the exponent, −1, is similar
to yh and y1. Now, the choice b = |∆T |−1/y1 yields the scaling form

Fs(µ, L) = |∆T |2−αf±
( h

(∆T )∆
, (∆T )νL

)
,

which is exactly of the type hypothesized earlier. In the limit L → ∞, the
functions f± should reduce to Y± so that the infinite size scaling forms are
recovered. The general RG procedures can not say anything more on the
nature of these functions, they can be obtained only from detailed calculations
on specific models.

4.9 Some Notes

A number of assumptions were introduced to extract the general features of
critical phenomena using the RG transformation. (i) It has been implicitly
assumed that a fixed point of the transformation exists and the transformation
equations are analytic (so that they can be linearised) near the fixed point. (ii)
The eigenfunctions of the linearised transformation are complete and hence
can be used as a basis for the µ-space. (iii) There are only two eigenvalues (ρ1

and ρh) of the linearised RG matrix, which exceed unity. (iv) In the expansion
t1(∆T ) = A1∆T +O(∆T )2, the constant A1 6= 0.

In the representation in which R̃q is diagonal, the linearised RG transfor-
mation

δµ′ = R̃qδµ,

takes the form
t′j = ρjtj.

Now, if ρj > 1 (i.e. yj > 0), tj increases on repeated application of R̃q while
it tends to zero if ρj < 1 (i.e. yj < 0). If ρj > 1, the variable tj is called a
relevant variable. Similarly, if ρj < 1, it is called an irrelevant variable since
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it does not play an important role near the fixed point. Those tj for which
ρj = 1 are known as marginal variables as they are unaffected by the RG
transformation. The assumption that only ρ1 and ρh are greater than unity,
which leads to the scaling forms, makes t1 and h relevant variables. Thus one
may expect that the simple scaling forms for the correlation function and free
energy density have to be modified if there are more relevant variables.

The scaling ansatz for the correlation function and free energy density were
derived by considering repeated application (l times) of R̃q and then choosing
ql ∼ ξ and ql ∼ k−1 . The scaling forms resulted on assuming that terms
like qly2 are negligible. Hence the region of temperature, in which the scaling
forms are valid, is decided by the smallness of ξy2 , i.e. |T − Tc|−νy2 . Similarly,
the region of k, in which the scaling form of the correlation function is valid, is
determined by the smallness of k−y2 . Thus, scaling behaviour will be observed
only when |T − Tc|−νy2 and k−y2 are small quantities.

4.10 Universality of Critical Phenomena

Having gone through the deduction of scaling behaviour from the RG formal-
ism, it is natural to see how the universality concepts of critical phenomena
are built into it. It was shown that the eigenvalues ρ1 and ρh of R̃q are related
to the critical exponents. It is clear that different hamiltonians represented
by points in the basin of attraction of a fixed point will approach it in a
similar manner if the RG transformation is applied repeatedly. The points
which do not lie on the critical surface associated with the fixed point, first
of all, move closer to it as the irrelevant variables are reduced to negligible
values. Thereafter, they move away from the fixed point. The manner in
which these points move in the neighborhood of the fixed point (on applying
the RG transformation) is dictated by the values of ρ1 and ρh which in turn
fix the exponents. Therefore, all systems represented by points in the basin of
attraction of a fixed point will have the same critical exponents and hence will
belong to the same universality class. It is possible that a particular model
may yield different fixed points and their associated basins of attraction in
the same parameter space. Then, systems corresponding to different fixed
points will belong to different universality classes. The observed dependence
of exponents on the order parameter dimension (n) and spatial dimension (d)
suggests that there are different fixed points in the parameter space.
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4.11 Gaussian Model - Exponents

The RG transformation equations for the Gaussian model have been derived
earlier. Using the relation a = (2− η − d)/2, they can be rewritten as

a′2 = a2q
2−η,

c′ = cq−η,

h′ = hq(2−η+d)/2.

One of the fixed points of the transformation is obtained by choosing η = 0.
This is equivalent to the choice a = (2−d)/2 discussed earlier. Then the fixed
point value of µ is

µ∗ = (a∗2, c
∗, h∗) = (0, c∗, 0).

Thus the fixed point hamiltonian is

H∗

T
= c∗

∫
(∇s)2dx,

where c∗ is an arbitrary constant. This fixed point is usually called the Gaus-
sian fixed point. There is no need to linearise the transformations for the
Gaussian model. Since the transformation matrix is diagonal, the eigenvalues
(with η = 0) are

ρ1(q) = qy1 = q2,

ρ2(q) = qy2 = 1,

ρh(q) = qyh = q(2+d)/2.

Thus two exponents are η = 0 and ν = 1/y1 = 1/2. They are the same as
those obtained from direct calculations. The scaling laws, now, provide the
other exponents of the Gaussian model, and they are

β = (ν/2)(d− 2 + η) = (d− 2)/4
δ = (d− η + 2)/(d+ η − 2) = (d+ 2)/(d− 2)
γ = ν(2− η) = 1
α = 2− ν d = (4− d)/(2)

Note that the exponent α = (4− d)/2 differs from the value α = 0 for d ≥ 4
obtained in the linearised L-G model. This point is discussed in next chapter.

4.12 Summary of RG Ideas

The RG approach has originated from an important observation that a system
near its critical point has a large (in units of a basic length scale like lattice
spacing) spatial correlation length. Therefore, two descriptions, differing in
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small length scale features (or details), should be equivalent. From a given de-
scription (say, as provided by the Ising model), one may obtain an equivalent
coarse grained description by a local reduction of degrees of freedom. Kadanoff
proposed a method to implement such a reduction of degrees of freedom by
averaging over cells of certain size. This approach was discussed in reference
to the 1-D Ising model. However, Wilson’s approach of integrating out short
wavelength Fourier components turns out to yield a workable scheme for con-
tinuum models like the L-G model. This approach also has been discussed
with reference to the Gaussian model.

Thus, starting from a given model (specified by a hamiltonian H), it may
be possible to generate a sequence of models (represented by H(l), l = 1, 2 · · ·)
by repeated application of the coarse graining operation. All these models are
expected to be equivalent near the critical point since all of them contain the
same long length scale details of the system. Thus, coarse graining operation
appears to be a symmetry operation for describing critical phenomena. The
equivalence of the generated models may be shown up in the almost similar
forms of the hamiltonians H(l). The initial hamiltonian H contains certain
parameters and its form should be sufficiently general so that the generated
hamiltonians H(l) also have the same form.

A particular hamiltonian can be characterized in terms of the values of its
parameters, and therefore one can imagine the hamiltonian to be represented
by a point in the parameter space. Coarse graining changes the values of the
parameters, and thus, leads to a new point in the parameter space and a new
hamiltonian. The effect of coarse graining can be extracted by comparing the
parameters of the two hamiltonians. However, parameters in a hamiltonian
are characteristic of the shortest length scale of that description. Since coarse
graining changes the shortest length scale, it is necessary to alter the length
unit so that the coarse grained description also has the same numerical value
of the shortest length scale. Having done this, it is possible to compare the
parameter sets of the two descriptions. Thus the coarse graining operation and
spatial length rescaling are the two important steps in the RG transformation.
When these steps are pictured as a transformation in the parameter space, it
is natural to look for the fixed points of the transformation. The systems
represented by the fixed points are invariant under the RG transformation.
Critical systems with large correlation lengths are expected to be invariant
under coarse graining and so it is natural to see if they can be associated with
the fixed points. Alternatively, one may say that if a fixed point can not be
identified, the idea of coarse graining may not be fruitful. For the Gaussian
model, it was seen that a renormalization of the remaining degrees of freedom
is necessary for identifying the proper fixed point. Thus the RG transforma-
tion contains three steps, (i) a partial reduction of degrees of freedom, (ii)
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spatial length rescaling, and (iii) a renormalization of the remaining degrees
of freedom.

The relation connecting the correlation lengths of equivalent systems gen-
erated via RG has shown that the systems represented by the fixed points have
infinite correlation lengths. All systems lying on the critical surface associated
with a fixed point also have infinite correlation lengths. The critical surface
was defined as the set of all points in the parameter space which approach the
fixed point by repeated RG transformation. It was also argued that in the
vicinity of a fixed point, the RG transformation can be linearised and repre-
sented by a linear operator. Assuming that the eigenvalues are discrete, the
eigenfunctions are complete, and only two eigenvalues are greater than unity,
it was possible to relate these eigenvalues to the critical exponents. It was also
possible to derive the scaling forms and hence the scaling relations among the
exponents. This picture was also able to account for the universality observed
in critical phenomena.

The RG approach does not say anything about the existence of fixed points
associated with any model. This can be explored only by studying the model
explicitly. So, what is remaining is to study the models and see if the above
picture applies or not. This has already been done for the 1-D Ising model and
the Gaussian model which can also be solved exactly with out invoking RG
ideas. Nontrivial models (like the L-G model) require approximate methods
for implementing the first step in RG approach. Some of these methods are
developed in the following chapters.
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Chapter 5

Wilson’s Recursion formulae

A nontrivial application of the RG ideas to the L-G model is developed in
the present chapter. This was the first application, by Wilson, which led to a
calculation of critical exponents. For simplicity, the calculations are restricted
to the case of a one component (n = 1) order parameter. A generalized L-G
form for H/T is

H[s]

T
=
∫
V

[
U(s) + c{∇s(x)}2

]
dx,

where U(s) is a function of s2. The magnetic field term is not included in
U(s) since yh and, hence, ∆ = yh/y1 depend only on η and d. U(s) may be
expanded as

U(s) =
∞∑
m=1

a2ms
2 m.

The first two terms yield the usual L-G model. The general form of U(s) is
necessary since it will be shown that, starting with the L-G form, all even
powers of s(x) are generated by the first step of RG. Thus, this example
will show the need to consider a large parameter space, in the present case
µ = (c, a2, a4, · · ·).

As mentioned earlier, there is a characteristic length scale b in the spatial
variation of s(x). This fact is expressed by imposing a cut-off wave vector
Λ = 2π/b in the Fourier expansion

s(x) =
1

Ld/2
∑
k≤Λ

exp(ık · x)sk.

It is known that when H[s] is expressed in terms of sk, the quartic and higher
order terms give rise to very complicated terms. Wilson’s recursion formulae
are derived by treating these terms in an approximate way. First of all s(x)
is written as

s(x) = s′(x) + φ(x),

107



108 Renormalization Group Theory

where s′(x) and φ(x) are given by

s′(x) =
1

Ld/2
∑
k≤Λ/q

exp(ık · x)sk,

φ(x) =
1

Ld/2
∑

Λ/q<k≤Λ

exp(ık · x)sk.

Thus s′(x) contains modes with smaller wave vectors while φ(x) contains
larger wave vectors. The first step in implementing RG is to obtain H ′′[s′] by
integrating out the Fourier components in φ(x). Thus H ′′[s′] is written as a
functional integral

exp
(H ′′[s′]

T
− AL

d

T

)
=
∫
Dφ exp

(
− H[s′ + φ]

T

)
,

where A is the contribution to free energy density from φ(x). The functional
integration is a notation which implies that contributions from all possible
φ(x) have to be added up to obtain the new hamiltonian H ′′[s′]. One of the
usual ways to achieve this is to express H[s′ + φ]/T in terms of the Fourier
components of φ(x) and then integrate over the Fourier amplitudes. Since
the representation of φ(x) in the Fourier basis is not convenient, a different
method to effect the functional integration has to be attempted. Note that

H[s′ + φ] =
∫
V

[
U(s′ + φ) + c{∇s′(x) +∇φ(x)}2

]
dx

=
∫
V

[
U(s′ + φ) + c{∇s′(x)}2 + c{∇φ(x)}2

]
dx.

The cross term does not contribute since∫
V

∇s′(x) · ∇φ(x)dx =
∑
k≤Λ/q

∑
Λ/q<k′≤Λ

k · k′sksk′δ(k− k′) = 0,

because the ranges of k and k′ do not overlap.

5.1 Wilson’s Functions

To carry out the functional integration, Wilson introduced a new basis set of
functions. The Fourier expansion uses the basis functions

vk =
1

Ld/2
exp(ık · x),

however, they are not convenient. Let w(x) be the most localized function,
around x = 0, that can be constructed by superposing the Fourier basis vk
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with Λ/q < k ≤ Λ. That is

w(x) =
1

Ld/2
∑

Λ/q<k≤Λ

exp(ık · x)ak.

The coefficients ak are chosen such that w(x) is the most localized function
around x = 0. The wave vectors in w(x) span the volume

Vk = (2Λ)d − (2Λ)d

qd
= (2Λ)d(1− q−d),

in the k-space. The minimum volume Ω that w(x) spans in the coordinate
space is restricted by the condition ΩVk ≥ (2π)d. Therefore

∆x = Ω1/d =
2π

V
1/d
k

,

is the linear dimension of the region, around x = 0, in which w(x) is significant.
With k restricted over a finite region, it is not possible to make w(x) vanish
outside Ω. The assumption is that ak’s can be chosen such that w(x) is
negligible outside Ω. Some important properties of the functions {w(x)} are
the following.

(i) First of all note that∫
V

w(x)dx =
∫
Ω

w(x)dx = 0,

since w(x) does note contain the k = 0 mode.
(ii) Imagine a lattice with spacing ∆x. Then, consider the set of functions

wl(x) = w(x−xl) where xl’s are the lattice points with spacing ∆x. Therefore
wl(x) can be written as

wl(x) =
1

Ld/2
∑

Λ/q<k≤Λ

exp{ık · (x− xl)}ak.

By assumption, wl(x) and wl′(x) (l 6= l′) do not overlap. Therefore they are
orthogonal, and so ∫

V

wl(x)wl′(x)dx = 0, for l 6= l′.

The magnitude of wl(x)) can be normalized (by adjusting the values of {ak}
by a constant) in any case. So the orthogonality condition is∫

V

wl(x)wl′(x)dx = δll′ .
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In terms of Fourier amplitudes, this means that∑
Λ/q<k≤Λ

exp{ık · (xl − xl′)}|ak|2 = δll′ .

(iii) It is further assumed that the functions {∇wl(x)} are also orthogonal.
That is,∫

V

∇wl(x) · ∇wl′(x)dx

=
∑

Λ/q<k≤Λ

akık exp(ık · x) ·
∑

Λ/q<k′≤Λ

akık
′ exp(ık′ · x)

× 1

Ld

∫
exp{ı(k + k′) · x}dx =

∑
Λ/q<k≤Λ

k2|ak|2 exp{ık · (xl − xl′)}.

Assuming that q ≈ 1, and hence k2 can be replaced by a mean value k2
m, one

gets ∫
V

∇wl(x) · ∇wl′(x)dx

≈ k2
m

∑
Λ/q<k≤Λ

|ak|2 exp{ık · (xl − xl′)} = k2
mδll′ .

Thus, for the orthogonality of {∇wl(x)}, it is necessary that q ≈ 1.
(iv) Another assumption on wl(x) is that |wl(x)| is spatially constant in

the region Ω surrounding the point xl. Since∫
Ω

wl(x)dx = 0,

this means that
wl(x) = ± |wl(x)|,

where the + sign is for one half of Ω and the − sign is for the remaining half
of Ω. Together with this assumption, the normalization condition on wl(x)
yields the result

|wl(x)|2Ω = 1 or |wl(x)| = 1√
Ω
.

Thus one gets

wl(x) = ± 1√
Ω
,

for the two half of Ω respectively. The variation of wl(x) is shown in Figure 5.1.
(v) The function φ(x) can be expressed as a superposition of wl(x). That

is,
φ(x) =

∑
l

φlwl(x),
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x

w(x)

∆x

Figure 5.1: Wilson Function.

where {φl} are the combining coefficients.

With the assumptions listed above, it is possible to carry out the functional
integration over φ(x) and obtain H ′′[s′]. Using assumption (iii), one gets∫

V

[∇φ(x)]2dx

=
∑
l

∑
l′
φlφl′

∫
V

∇wl(x) · ∇wl′(x)dx =
∑
l

φ2
l k

2
m,

where k2
m is the mean value of k2 (in the interval Λ/q to Λ) introduced earlier.

Thus, the implicit assumption, in obtaining this result, is that q ≈ 1. Now,
consider the term ∫

V

U(s′ + φ)dx =
∑
l

∫
Ω

U(s′ + φ)dx.

According to assumption (ii), wl(x) does not overlap with wl′(x) when x is in
Ω. Therefore, ∫

Ω

U(s′ + φ)dx ≈
∑
l

∫
Ω

U [s′(x) + φlwl(x)]dx.

To simplify this relation further, s′(x) may be taken to be slowly varying in
the region Ω. That means s′(x) ≈ s′(xl) for x in Ω. Then, use of assumption
(iv) yields∫

Ω

U(s′ + φ)dx ≈
∑
l

Ω

2

(
U
[
s′(xl) +

φl√
Ω

]
+ U

[
s′(xl)−

φl√
Ω

])
. (5.1)
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Therefore, Eqs(5.1) and (5.2) give∫
V

[
c{∇φ(x)}2 + U(s′ + φ)

]
dx

=
∑
l

cφ2
l k

2
m +

Ω

2
U
[
s′(xl) +

φl√
Ω

]
+

Ω

2
U
[
s′(xl)−

φl√
Ω

]
.

The functional integral over φ(x) can now be replaced by a multiple integral
over the amplitudes {φl}.

5.2 Recursion Formulae

The new hamiltonian H ′′[s′] can now be written as

exp
(H ′′[s′]

T
− ALd

T

)
= exp

(
− c

∫
V

{∇s′(x)}2dx
)

×
∫ ∏

l

dφl exp
(
−
∑
l

cφ2
l k

2
m +

Ω

2
U
[
s′(xl) +

φl√
Ω

]
+

Ω

2
U
[
s′(xl)−

φl√
Ω

])
.

where the integrals over φl run over −∞ to ∞. Defining the integral

I[s′(xl)] =

∞∫
−∞

dφl exp
(
− cφ2

l k
2
m −

Ω

2
U
[
s′(xl) +

φl√
Ω

]
− Ω

2
U
[
s′(xl)−

φl√
Ω

])
,

H ′′[s′] can be expressed as

exp
(H ′′[s′]

T
− ALd

T

)
= exp

[
− c

∫
V

{∇s′(x)}2dx
] ∏

l

I[s′(xl)]

= exp
[
− c

∫
V

{∇s′(x)}2dx +
∑
l

ln{I[s′(xl)]}
]

= exp
[
− c

∫
V

{∇s′(x)}2dx + Ω−1
∫
V

ln{I[s′(x)]}dx
]
,

where the summation in the last term has been replaced by a volume integral.
The last expression gives

H ′′[s′]

T
− ALd

T
=

∫
V

[
c{∇s′(x)}2 − Ω−1 ln{I[s′(x)]}

]
dx

=
∫
V

[
c{∇s′(x)}2 − 1

Ω
ln
{I[s′(x)]

I(0)

}]
dx− V

Ω
ln{I(0)}.
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Since the hamiltonian must be zero when s′ = 0, H ′′/T can now be identified
as

H ′′[s′]

T
=
∫
V

[
c{∇s′(x)}2dx− 1

Ω
ln
{I[s′(x)]

I(0)

}]
dx.

The free energy density term is

A

T
=

1

Ω
ln{I(0)}.

Thus, starting with the hamiltonian

H[s]

T
=
∫
V

[U(s) + c{∇s(x)}2]dx,

the new hamiltonian obtained is

H ′′[s′]

T
=
∫
V

[U ′′(s′) + c{∇s′(x)}2]dx,

where U ′′(s′) is given by

U ′′(s′) = − 1

Ω
ln
{I(s′)

I(0)

}
.

The integral I(s′) can be rewritten as

I(s′) =

∞∫
−∞

dφ exp
(
− cφ2k2

m −
Ω

2

{
U
[
s′ +

φ√
Ω

]
+ U

[
s′ − φ√

Ω

]})
.

The factor Ω (which is rather arbitrary) can be removed by the definitions

U(s) =
1

Ω
Q(s), U ′′(s′) =

1

Ω
Q′′(s′).

Then the two hamiltonians are given by

H[s]

T
=

∫
V

[ 1

Ω
Q(s) + c{∇s(x)}2

]
dx,

H ′′[s′]

T
=

∫
V

[ 1

Ω
Q′′(s′) + c{∇s′(x)}2

]
dx,

where

Q′′(s′) = − ln
[I(s′)

I(0)

]
.

The integral I(s′) reduces to

I(s′) =

∞∫
−∞

dφ exp
[
− ck2

mΩφ2 − 1

2
{Q(s′ + φ) +Q(s′ − φ)}

]
. (5.2)
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Thus the first step of RG transformation is completed. Now, the unit of
length has to be changed by a factor q and the scale factor α(q) for changing
the magnitude of s′(x) is to be introduced. These changes lead to the following
replacements.

x → x′ =
x

q
,

s′(x) → α(q)s(x′),

∇x → 1

q
∇x′ ,∫

V

(· · ·)dx → qd
∫
V ′

(· · ·)dx′.

The factor α(q) = qa and it is known that a and the exponent η are related as

a = 1− η

2
− d

2
.

So the hamiltonian H ′′[s′] is to be replaced by

H ′[s]

T
=

∫
V ′

[ 1

Ω
Q′′{α(q)s(x′)}+

c

q2
∇{α(q)s(x′)}2

]
qddx′

=
∫
V ′

[ 1

Ω
Q′{s(x′)}+ c′{∇s(x′)}2

]
dx′,

where the new variables defined are

c′ =
c

q2
α2(q)qd = cq−η,

Q′(s) = qdQ′′
[
α(q)s

]
= qdQ′′

[
q1−η/2−d/2s

]
= −qd ln

[I{q1−η/2−d/2s}
I(0)

]
.

I(s) and Q(s) are related as in Eq.(5.3). These equations thus define the
RG transformation. The value of η (or equivalently a) has to be chosen so
as to identify the appropriate fixed point. Note that if η 6= 0, then repeated
application of the transformation leads to c = 0. In other words, the fixed
point value of c, defined as c∗ = c∗q−η is zero if η 6= 0. When c∗ = 0, the fixed
point hamiltonian does not contain the gradient term and therefore it can not
show any spatial correlation between the spin values. Such a hamiltonian can
not be associated with a critical system. Hence η should be taken as zero. The
approximations introduced to derive the RG transformation force the value
of η to be zero. Thus the transformation of the other parameters (in Q(s) or
U(s)) are given by

Q′(s) = −qd ln
[I(q1−d/2s)

I(0)

]
,
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I(s) =

∞∫
−∞

dφ exp
[
− zφ2 − 1

2
{Q(s+ φ) +Q(s− φ)}

]
.

where z = ck2
mΩ is a function of q since k2

m as well as Ω are functions of q.
If Q(s) is expressed as a power series in s2, then the above equations define
the transformation for the coefficients of the power series. Since there are an
infinite number of coefficients in the power series, the above equations show
an example of RG transformation in an infinite dimensional parameter space.

5.2.1 Approximations

Two main approximations have been introduced in deriving the recursion for-
mula. The first one is that the functions {∇wl(x)} are orthogonal. For this
to hold, the variation of k2 in the interval Λ/q to Λ must be small so that
it can be replaced by a mean value. This implies that 1 � (Λ − Λ/q)/(Λ/q)
which shows that 1 � q − 1 or 2 � q . The second assumption is that s′(x)
is practically constant in Ω over which wl(x) is significant. The wave vectors
in s′(x) lie in the interval 0 to Λ/q. So the smallest wavelength in s′(x) is

λmin =
2π

kmax
=

2πq

Λ
= bq.

For the variation of s′(x) in Ω to be negligible, this wavelength should be large
compared to the linear size of Ω. Therefore, this condition may be expressed
as

λmin
2
� Ω1/d.

Thus one gets another condition

bq

2
� b

2
(1− q−d)−1/d,

which means

(qd − 1)1/d � 1 or qd � 2.

Thus there are conflicting requirements on the scale parameter q. Also note
that the approximation, s′(x) is constant in Ω, is the reason which forces the
exponent η to be zero. An improved recursion formula which relaxes this
assumption has been derived by Golner and it yields a nonzero value for η.

5.2.2 Numerical Calculations

Wilson performed numerical calculations with the recursion formula for d = 3.
Choosing a value of q = 2 (a compromise value), the fixed point function Q∗(s)
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s

Q∗(s)

Figure 5.2: Fixed Point Function.

is determined by solving the non-linear integral equation

Q∗(s) = −2d ln
[I∗(21−d/2s)

I(0)

]
,

I∗(s) =

∞∫
−∞

dφ exp
[
− zφ2 − 1

2

{
Q∗(s+ φ) +Q∗(s− φ)

}]
.

The parameter z = ck2
mΩ was chosen to be unity since c is arbitrary. The fixed

point function has a behavior shown in Figure 5.2. Once Q∗(s) is obtained,
the transformation equation can be linearised by writing

Q′(s) = Q∗(s) + δQ′(s)

Q(s) = Q∗(s) + δQ(s).

Thus one finds

Q∗(s) + δQ′(s)

= −2d ln
[
I∗(21−d/2s) + δI(21−d/2s)

]
− 2d ln

[
I∗(0) + δI(0)

]
,

where δI is the change in I when Q is changed from Q∗ to Q∗+ δQ. For small
δQ, δI is small and therefore

ln(I∗ + δI) ≈ ln(I∗) + ln
(
1 +

δI

I∗

)
≈ ln(I∗) +

δI

I∗
.

Thus δQ′(s) is given by

δQ′(s) = −2d
[δI(21−d/2s)

I∗(21−d/2s)
− δI(0)

I∗(0)

]
.
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From the definition of I(s) (with z=1), one gets

I∗(s) + δI(s) =

∞∫
−∞

dφ exp
[
− φ2 − 1

2
{Q∗(s+ φ) +Q∗(s− φ)}

]

×
[
1− 1

2
{δQ(s+ φ) + δQ(s− φ)}

]
.

Therefore δI(s) is given by

δI(s) = −1

2

∞∫
−∞

dφ exp
[
− φ2 − 1

2
{Q∗(s+ φ) +Q∗(s− φ)}

]
×
[
δQ(s+ φ) + δQ(s− φ)

]
= −

∞∫
−∞

dφ exp
[
− φ2 − 1

2
{Q∗(s+ φ) +Q∗(s− φ)}

]
δQ(s+ φ)

= −
∞∫
−∞

dφ exp
[
− (φ− s)2 − 1

2
{Q∗(φ) +Q∗(2s− φ)}

]
δQ(φ).

The linearised transformation equation then becomes

δQ′(s)

=
2d

I∗(w s)

∞∫
−∞

dφ exp
[
− (φ− w s)2 − 1

2
{Q∗(φ) +Q∗(w s− φ)}δQ(φ)

]

− 2d

I∗(0)

∞∫
−∞

dφ exp
[
− φ2 − 1

2
{Q∗(φ) +Q∗(−φ)}

]
δQ(φ),

where w = 21−d/2. This equation can be rewritten as

δQ′(s) =

∞∫
−∞

dφ T (s, φ) δQ(φ),

where the kernel T (s, φ) is given by

T (s, φ)

=
2d

I∗(w s)
exp

[
− (φ− w s)2 − 1

2
{Q∗(φ) +Q∗(w s− φ)}

]
− 2d

I∗(0)
exp

[
− φ2 − 1

2
{Q∗(φ) +Q∗(−φ)}

]
δQ(φ).

This linear transformation is analogous to the linearised RG matrix R̃q. For
the RG picture to hold, this kernel should have eigenvalues ρ1 > 1 and ρj < 1
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for j ≥ 2. The eigenvalues can be determined numerically and then the
correlation length exponent ν can be obtained as ρ1 = 21/ν . For d = 3,
Wilson thus obtained ν = 0.609. The scaling law γ = (2 − η)ν then yields
γ = 1.218 (since η has already been obtained as 0). These results may be
compared with ν = 0.636 and γ = 1.25 obtained using high temperature
series expansion of the partition function. Wilson’s recursion formulae can
be extended to the case of multi-component order parameter. Calculations
similar to that described show that γ = 1.29 for n = 2 and γ = 1.36 for
n = 3. The high temperature series results are γ = 1.32± 0.01 for n = 2 and
1.38 ± 0.01 for n = 3. Some analytical results that can be obtained for the
Gaussian model and a perturbed Gaussian model are discussed below.

5.3 Gaussian Model via Recursion formulae

The Gaussian model is obtained by taking the m = 1 term in the power series
expansion of Q(s). That is

Q(s) = a2s
2.

Then I(s) becomes

I(s) =

∞∫
−∞

dφ exp
[
− zφ2 − a2

2
{(s+ φ)2 + (s− φ)2}

]

= exp(−a2s
2)

∞∫
−∞

dφ exp[−zφ2 − a2φ
2] = exp(−a2s

2)I(0).

Therefore Q′(s) reduces to

Q′(s) = −qd ln
[I(q1−d/2s)

I(0)

]
= a2q

dq2−ds2 = a′2s
2.

Thus the RG transformation for the Gaussian model is

a′2 = a2q
2

c′ = c.

This is a linear transformation with the fixed point a∗2 = 0 and c∗ is arbi-
trary. Hence ∆a2 = a2 − a∗2 has the same transformation law. Therefore the
correlation length exponent of the Gaussian model is ν = y−1

1 = 1/2. Thus
the assumptions made in the derivation of the recursion formulae yield exact
results, ν = 1/2 and η = 0, for the Gaussian model.
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5.4 Perturbed Gaussian Model

Now consider the terms with m = 1 and m = 2 in Q(s), that is

Q(s) = a2s
2 + a4s

4.

The quartic term a4s
4 is taken as a small perturbation. Then one gets

I(s) =

∞∫
−∞

dφ exp
[
− zφ2 − 1

2
{a2(s+ φ)2 + a2(s− φ)2

+ a4(s+ φ)4 + a4(s− φ)4}
]
.

Using the results

1

2

[
(s+ φ)2 + (s− φ)2

]
= s2 + φ2,

1

2

[
(s+ φ)4 + (s− φ)4

]
= s4 + 6s2φ2 + φ4,

I(s) can be simplified as

I(s) = exp(−a2s
2 − a4s

4)

∞∫
−∞

dφ exp
[
− zφ2 − {a2φ

2 + 6a4s
2φ2 + a4φ

4}
]

= exp(−a2s
2 − a4s

4)

∞∫
−∞

dφ exp(−φ2/α)

×
[
1− a4(6s2φ2 + φ4) +

1

2
a2

4(6s2φ2 + φ4)2 +O(a3
4)
]
,

where α = (z+ a2)−1. The terms containing a4 have been expanded in Taylor
series accurate up to a2

4. The above expression can be further simplified as

I(s) = exp(−a2s
2 − a4s

4)

∞∫
−∞

dφ exp(−φ2/α)

×
[
1− 6a4s

2φ2 − (a4 − 18a2
4s

4)φ4 + 6a2
4s

2φ6 +
a2

4

2
φ8
]
.

If Jn(α) is defined as

Jn(α) =

∞∫
−∞

dφ exp(−φ2/α)φn,

then one gets

J0(α) =
√
πα, J2(α) =

√
πα

α

2
, J4(α) =

√
πα

3

4
α2,

J6(α) =
√
πα

15

8
α3, J8(α) =

√
πα

105

16
α4.
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Therefore I(s) can be evaluated as

I(s) = exp(−a2s
2 − a4s

4)
√
πα

×
[
1− 6

2
a4s

2α− (a4 − 18a2
4s

4)
3

4
α2 + 6a2

4s
2 15

8
α3 +

a2
4

2

105

16
α4
]

= exp(−a2s
2 − a4s

4)
√
πα

×
[
1− a4(

3

4
α2 + 3s2α) + a2

4(
105

32
α4 +

45

4
α3s2 +

27

2
α2s4)

]
.

On taking logarithms,

− ln
[I(s)

I(0)

]
= a2s

2 + a4s
4

− ln
[
1− a4(

3

4
α2 + 3s2α) + a2

4(
105

32
α4 +

45

4
α3s2 +

27

2
α2s4)

]
+ ln

[
1− a4

3

4
α2 + a2

4

105

32
α4
]
.

Note that Q′(s) is proportional to − ln[I(s)/I(0)] and it contains all powers of
s2 even though there were only a quadratic term and a quartic term in Q(s).
Thus a large parameter space is to be considered for implementing RG. On
expanding the logarithmic terms one finds

− ln
[I(s)

I(0)

]
= a2s

2 + a4s
4 −

[
− a4(

3

4
α2 + 3s2α)

+ a2
4(

105

32
α4 +

45

4
α3s2 +

27

2
α2s4)− a2

4

2
(
3

4
α2 + 3s2α)2

]
+

[
− a4

3

4
α2 + a2

4

105

32
α4
]
− a2

4

2
(
3

4
α2)2

= a2s
2 + a4s

4 + a43s2α− a2
4

[45

4
α3s2 +

27

2
α2s4

]
+

a2
4

2

[18

2
α3s2 +

36

4
α2s4

]
+O(a3

4).

If terms accurate to a2
4 alone are retained, Q′(s) and Q(s) are of the same

form. On introducing the replacement

s2 → q2−ds2,

one gets

Q′(s) = qd
[
(a2 + 3αa4 − 9a2

4α
3)q2−ds2

+ (a4 − 9a2
4α

2)q4−2ds4
]

+O(a3
4)

= a′2s
2 + a′4s

4 +O(a3
4).
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Thus the transformation Rq in the µ-space {µ = (c, a2, a4)} is given by

c′ = c,

a′2 = q2(a2 + 3αa4 − 9a2
4α

3) +O(a3
4),

a′4 = q4−d(a4 − 9a2
4α

2) +O(a3
4).

These recursion relations have been derived by assuming that a4 is a small
number and terms of O(a3

4) and higher orders can be neglected. Therefore
the fixed point values a∗2 and a∗4 obtained from them should also be consistent
with this approximation. The fixed point value c∗ is arbitrary. Other fixed
points are defined as

a∗2 = q2
[
a∗2 +

3a∗4
z + a∗2

− 9a∗ 2
4

(z + a∗2)3

]
+O(a∗ 3

4 ),

a∗4 = q4−d
[
a∗4 −

9a∗ 2
4

(z + a∗2)2

]
+O(a∗ 3

4 ).

Clearly, a∗2 = 0 and a∗4 = 0 are solutions of these equations. Recall that this
solution corresponds to the fixed point of the Gaussian model. From the first
equation it is found that

(1− q2)a∗2 ≈ a∗4 +O(a∗ 2
4 ).

Since a∗4 has to be small (due to the nature of the approximate calculation),
one should expect a∗2 also to be small. As the aim is to study the recursion
formulae near the fixed points, they can be simplified by assuming a2 and a4

to be small. Assuming that a2 ∼ a4 and keeping terms up to O(a2
4) one gets

a′2 = q2
[
a2 +

3

z
a4(1− a2

z
)− 9

z3
a2

4

]
+O(a3

4), (5.3)

a′4 = q4−d
[
a4 −

9

z2
a2

4 +O(a3
4

]
. (5.4)

Fixed points of the simplified formulae are given by

a∗2 = q2
[
a∗2 +

3

z
a∗4(1− a∗2

z
)− 9

z3
a∗ 2

4

]
+O(a∗ 3

4 ),

a∗4 = q4−d
[
a∗4 −

9

z2
a∗ 2

4

]
+O(a∗ 3

4 ).

Thus µ∗ = (c∗, a∗2, a
∗
4) = (c∗, 0, 0) is one of the fixed points. This is usually

known as the Gaussian fixed point since the probability distribution of the
Fourier amplitudes is Gaussian. The second equation shows that the other
fixed point value of a∗4 satisfies

1 = q4−d
[
1− 9

z2
a∗4
]

+O(a∗ 2
4 ).
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That is

a∗4 =
z2

9
(1− qd−4) +O(a∗ 2

4 ).

5.5 Dimensionality Expansion

The value of a∗4 must be small for it to be consistent with the approximation
scheme, and the only parameter that is free to be adjusted is the spatial
dimension d. Note that the parameter q ≈ 2 as required in the derivation of
the recursion formulae. So d is taken as a continuous parameter even though
the positive integer values only have physical meaning. The main aim in these
considerations is to see what the RG transformation equations can provide in
a consistent approximation scheme. Thus the parameter ε = 4−d is defined as
a continuous variable. A small positive value of ε implies that d < 4. A value
ε = 0.1 may not have any physical meaning, but keeping d as a parameter of
the L-G model, one can investigate the results of a consistent approximation
scheme. Assuming that ε is small and hence

q−ε ≈ 1− ε ln(q) +O(ε2),

the expression for a∗4 yields

a∗4 =
ε

9
ln(q)z2 +O(ε2).

Thus for small ε, a∗4 is of order ε and hence the approximation scheme is
consistent. This observation is the starting point for considering continuous
dimension d and “ε expansion” in the RG approach. For a∗2 one gets

a∗2 =
q2

1− q2

3

z
a∗4 +O(a∗ 2

4 )

=
q2

1− q2

z

3
ε ln(q) +O(ε2).

Thus another fixed point (depending on the value of ε) with a small positive a∗4
and a small negative a∗2 has been obtained. This fixed point will be refered to
as the non-Gaussian fixed point. Now, the linearised transformation equations
can be investigated around these fixed points.

5.6 Gaussian Fixed Point µ∗ = (c∗, 0, 0)

Around this fixed point, it is easy to linearise Eqs.(5.4) and (5.5) to obtain

∆a′2 = q2
[
∆a2 +

3

z
∆a4

]
,

∆a′4 = qε∆a4, z = ck2
mΩ, ε = 4− d.
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Note that the volume Ω = (2π)d/Vk as well as k2
m depend on the parameter q.

Assuming that Vk can be approximated as a spherical shell, one gets

1

z
=

κd
ck2

m

Λ∫
Λ/q

kd−1dk,

where κd is (2π)−d times the angular part of the volume in k-space. Since k2
m

is the mean value of k2 in Λ/q to Λ, z−1 may be written as

1

z
≈ κd

c

Λ∫
Λ/q

kd−1

k2
dk

=
κd
c

1

d− 2

[
Λd−2 − (

Λ

q
)d−2

]
=

κd
c

Λd−2

d− 2
(1− q2−d).

Therefore the transformation equations become

∆a′2 = q2∆a2 +B(q2 − qε)∆a4,

∆a′4 = qε∆a4, B =
3κd

(2π)dc

Λd−2

d− 2
.

The parameter B is independent of q. Thus the linearised RG matrix is

R̃q =
[
q2 B(q2 − qε)
0 qε

]
Its eigenvalues and eigenvectors are

ρ1 = qy1 = q2, e1 =
(

1
0

)
,

ρ2 = qy2 = qε, e2 =
( −B

1

)
,

Thus both the eigenvalues are greater than unity when ε > 0, i.e. d < 4.
For d > 4, one finds that ρ1 > 1 and ρ2 < 1 since y1 = 2 > 0 and y2 =
ε < 0. Therefore, the assumptions made in the RG approach regarding the
nature of eigenvalues are found to be satisfied for d > 4. Thus the fixed point
µ∗ = (c∗, 0, 0) is appropriate for d > 4 and the correlation length exponent
ν = y−1

1 = 1/2. The second fixed point is not appropriate for d > 4 since a∗4 is
negative, a∗4 is proportional to ε and ε < 0 for d > 4, and therefore the fixed
point hamiltonian is not normalizable. Any arbitrary deviation

∆a =
(

∆a2

∆a4

)
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Figure 5.3: Critical Surface.

can be expanded in terms of the eigenvectors as

∆a = t1e1 + t2e2.

Therefore, the coefficients t1 and t2 can be expressed as

t2 = ∆a4

t1 = ∆a2 +B∆a4.

Now, recall that the critical surface is defined as the set of points {∆a} which
have no projection on the eigenvector e1. Thus the critical surface is deter-
mined by the condition

∆a2 +B∆a4 = 0,

which is a straight line (see Figure 5.3) in the parameter space. Repeated
application (l times) of R̃q on ∆a yields

∆a(l) = t1q
2le1 + t2q

lεe2

= (∆a2 +B∆a4)q2le1 + ∆a4q
lεe2.

For a large value of l one gets

∆a
(l)
2 = (∆a2 +B∆a4)q2l −B∆a4q

lε

≈ (∆a2 +B∆a4)q2l,

∆a
(l)
4 = ∆a4q

lε,

since ε < 0 when d > 4. Thus for large l, ∆a
(l)
4 tends to zero while ∆a

(l)
2

approaches ±∞ depending on whether

t1 = (∆a2 +B∆a4),
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is greater or less than zero. The flow of points in the parameter space, on
repeated application of R̃q, is also shown in the above figure. Note that
points not lying on the critical surface first come closer to the fixed point and
then move away from it.

5.7 Failure of Hyperscaling Law for d > 4

From the exponents ν = 1/2 and η = 0, the other exponents can be calculated.
They are given by

α = 2− νd = 2− d/2
γ = ν(2− η) = 1
β = (2− α− γ)/2 = (d− 2)/4
δ = (β + γ)/β = (d+ 2)/(d− 2).

However, several arguments were given earlier (in Chapter 2) to show that
Landau’s theory together with the Gaussian approximation is correct for d > 4
and the exponents are ν = 1/2, η = 0, α = 0, γ = 1, β = 1/2 and δ = 3.
Thus the values of α, β and δ disagree with those obtained using the scaling
laws. To resolve this point, it is necessary to reexamine the derivation of
the hyperscaling law and hence the value of α. The relation connecting the
singular parts of free energy densities of two equivalent models generated by
RG is

Fs(µ) = q−dFs(µ
′),

where the contribution from the eliminated modes has been omitted. Repeated
application of this relation (l times) yields

Fs(∆a2,∆a4) = q−ldFs(∆a
(l)
2 ,∆a

(l)
4 )

= q−ldFs(t1q
2l,∆a4q

lε), l� 1.

Since the initial point is not on the critical surface, t1 6= 0. With t1 ≈ A1∆T
and small ∆T = T − Tc , one finds

Fs(∆a2,∆a4) = q−ldFs(A1∆Tq2l,∆a4q
lε).

As l increases, ∆a4q
lε tends to zero since ε < 0. Then, the choice ql = |∆T |−1/2

yields

Fs(∆T ) = |∆T |d/2Fs(±A1, 0)

= constant× |∆T |2−α.

Thus 2−α = d/2 which is a special case of the hyperscaling law with ν = 1/2.
However, this conclusion is based on the assumption that Fs(±A1, 0) is a
finite number. This requires that the free energy density should remain finite
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as the coefficient of the quartic term approaches zero. To check the validity of
this assumption, for small ∆a4q

lε, the expression for free energy density from
Landau’s theory can be used. Note that as d > 4 and l is a large number,
a

(l)
2 is a large number while a

(l)
4 is a negligibly small number. Thus for d > 4

and large l, the renormalised hamiltonian is a L-G model with a small quartic
term. Therefore the idea of linearization around the most probable order
parameter may be employed. Thus the use of Landau’s expression to obtain
the dependence of free energy density on the coefficient of the quartic term
may be justified. But Landau’s expression for free energy density FL(a2, a4)
diverges as a−1

4 as a4 → 0. Thus the assumption that Fs(±A1, 0) is finite and
hence the hyperscaling law 2 − α = d/2 are incorrect. The hyperscaling law
is to be rederived by using the fact that FL(a2, a4) diverges as a−1

4 as a4 → 0.
Therefore Fs may be written as

Fs(A1∆Tq2l,∆a4q
lε) ≈ 1

∆a4

q−l εF ∗s (A1∆Tq2l,∆a4q
lε),

where F ∗s is finite as l becomes large. Then the functional equation should be
written as

Fs(∆a2,∆a4) =
1

∆a4

q−ldq−l εF ∗s (A1∆Tq2l,∆a4q
lε)

=
1

∆a4

q−4lF ∗s (A1∆Tq2l,∆a4q
lε).

Now, choosing ql = |∆T |−1/2, for large values of l one gets

Fs(∆T ) =
|∆T |2

∆a4

F ∗s (±A1, 0).

This relation shows that α = 0 which further yields β = 1/2 and δ = 3. Thus
the hyperscaling law, derived by assuming that Fs(±A1, 0) is finite, is wrong
for d > 4 and exponents of Landau’s theory are correct.

The variable a4 is irrelevant for d > 4 since it tends to zero on repeated
application of the RG transformation. But it is now clear that the free energy
density diverges as a4 approaches zero and this fact makes the hyperscaling
law invalid. Therefore a4 is termed as a dangerous irrelevant variable. Finally,
note that the Gaussian fixed point is not appropriate for d < 4 since both the
eigenvalues are greater than unity.

5.8 Non-Gaussian Fixed Point µ∗ = (c∗, a∗2, a
∗
4)

The linearised RG matrix, R̃q, at the non-Gaussian fixed point is to be studied
for d < 4. The recursion relations

a′2 = q2
[
a2 +

3

z
a4(1− a∗2

z
)− 9

z3
a2

4

]
+O(a3

4),
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a′4 = q4−d
[
a4 −

9

z2
a2

4

]
+O(a3

4),

can be linearised by putting a2 = a∗2 + ∆a2 etc. That leads to

a∗2 + ∆a′2 = q2
[
a∗2 + ∆a2 +

3

z
(a∗4 + ∆a4)

× {1− 1

z
(a∗2 + ∆a2)} − 9

z3
(a∗ 2

4 + 2a∗4∆a4)
]
,

a∗4 + ∆a′4 = qε
[
a∗4 + ∆a4 −

9

z2
(a∗ 2

4 + 2a∗4∆a4)
]
.

On using the definition of the fixed point values, one finds

∆a′2 = q2
[
∆a2 −

3a∗4
z2

∆a2 +
3

z
(1− a∗2

z
)∆a4 −

18

z3
a∗4∆a4

]
,

∆a′4 = qε
[
∆a4 −

18

z2
a∗4∆a4

]
.

Thus the transformation matrix is

R̃q =
[
q2(1− 3a∗4/z

2) q2{(3/z)(1− a∗2/z)− 18a∗4/z}
0 qε(1− 18a∗4/z

2)

]
.

The fixed points satisfy the equations

a∗2 =
3q2

1− q2

a∗4
z
,

a∗4 = (1− q−ε)z
2

9
.

Therefore one finds

1− 3a∗4
z2

= 1− 1

3
(1− q−ε)

= 1− ε

3
ln(q) +O(ε2)

= q−ε/3 +O(ε2),

1− 18a∗4
z2

= 1− 2(1− q−ε)

= 1− 2ε ln(q) +O(ε2)

= q−2ε +O(ε2),

3

z
(1− a∗2

z
)− 18

a∗4
z3

=
1

z

[
3{1 +

ε

3

q2

q2 − 1
ln(q)} − 2ε ln(q)

]
+O(ε2)

=
1

z

[
3{1− ε

3
ln(q)}+

ε ln(q)

q2 − 1

]
=

3

z
q−ε/3 +O(ε).

Thus R̃q is given by

R̃q =

[
q2−ε/3 (3/z)q2−ε/3 +O(ε)

0 q−ε

]
.
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Hence the eigenvalues are ρ1 = q2−ε/3 and ρ2 = q−ε and hence y1 = 2 − ε/3
and y2 = −ε. Thus the fixed point has the required properties for ε > 0, i.e.
for d < 4. It was noted earlier that this fixed point is inappropriate for d > 4.
The critical exponents can be now computed using the value of y1. Thus, for
d < 4 they are given by

η = 0 +O(ε2),

ν = (2− ε/3)−1

= 1/2 + ε/12 +O(ε2),

α = (4− d)/2− εd/12

= ε/6 +O(ε2),

γ = 2(1/2 + ε/12)

= 1 + ε/6 +O(ε2),

β = (2− ε/6− 1− ε/6)/2

= 1/2− ε/6 +O(ε2),

δ = (1/2− ε/6 + 1 + ε/6)/(1/2− ε/6)

= 3 + ε+O(ε2),

Thus, the calculations using the recursion formulae show that for d < 4, but
ε = 4 − d a small number, α is of order ε, η is of order ε2 and δ, γ and ν
are greater than those of Landau’s theory. The experimental values (for d=3)
indeed show that α and η are very small quantities. The increase in the values
of other exponents is also in accordance with experimental facts and results
of numerical calculations of 3-D Ising model. It should be noted that the
eigenvalue ρ2 becomes unity when the appropriate fixed point changes from
Gaussian to non-Gaussian type at d = 4.
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Chapter 6

Perturbation Theory and ε
Expansion

In this chapter, the results obtained using Wilson’s recursion formulae are
rederived in a more systematic manner. The recursion formulae were derived
using a number of approximations and there was no way to assess their ac-
curacy. Further, with the present approach based on perturbation theory, it
is possible to develop a systematic procedure for obtaining more accurate re-
sults. Recall that a direct perturbation approach, attempted in Chapter 2,
is not useful in the critical region. Together with the RG ides, it provides a
systematic calculational scheme. Consider the L-G hamiltonian,

H[s] =
∫
V

[r
2
s2(x) +

u

8
s4(x) +

c

2
(∇s(x))2

]
dx.

Here, the parameters in H have been redefined as a2 = r/2, a4 = u/4 and c
is replaced with c/2. Further, H is used to denote H/T for simplifying the
notations. The magnetic field term has been omitted since the transformation
law for the field is known. The order parameter s is assumed to have n
components. In terms of Fourier amplitudes sik in

si(x) =
1

Ld/2
∑
k≤Λ

exp(ık · x)sik, 1 ≤ i ≤ n,

the hamiltonian can be expressed as

H[s] =
1

2

∑
i

∑
k≤Λ

(r + ck2)|sik|2

+
u

8Ld
∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4).

The delta function shows that the sum of wavevectors, k1 + k2 + k3 + k4 is
zero. Further, the symbol,

∑
{km}(· · ·) indicates summation over each of the

130
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indices k1 to k4. The parameter space is µ = (r, u, c) and µ′ = Rqµ is to be
obtained by calculating the new hamiltonian H ′[s], defined as

exp(−H ′[s]− ALd) =
∫

exp(−H[s])
∏

i Λ/q<k≤Λ

dsik,

sik → sik′q
1−η/2 , k′ = qk.

Note that the factor q1−η/2 was obtained from α(q)qd/2 where

α(q) = qa, a =
1

2
(2− η − d).

The parameter η is to be adjusted to find a proper fixed point and H ′[s] = 0
when s = 0. The presence of the quartic term in H[s] causes difficulties in
implementing the reduction of degrees of freedom. So exp(−H[s]) is expanded
as a power series in u. Then it is possible to evaluate all the relevant integrals
since they are of the Gaussian form. However, there are enormous complica-
tions due to the fact that the Fourier amplitudes with k values in Λ/q to Λ
are only to be integrated out. The Gaussian model, which has been discussed
earlier, is obtained when u = 0. The perturbation expansion of exp(−H[s]) in
powers of u implies that the calculations are valid only for small values of u.

6.1 Perturbation Expansion

The range of k values is split into two groups,

kA = Λ/q < k ≤ Λ,

kB = 0 ≤ k ≤ Λ/q.

sik is denoted as s′′ik if k is in kA group and as s′ik if k is in kB group. That is

sik =
{
s′′ik for k in kA
s′ik for k in kB

Now, each summation in H[s] can be split as

∑
i k

(· · ·) =
A∑
i k

(· · ·) +
B∑
i k

(· · ·).

Then H[s] can be written as

H[s] = H0[s′′] +H[s′] +H1[s′, s′′].

The first term is

H0[s′′] =
1

2

A∑
i k

(r + ck2)|s′′ik|2.
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The second term, which is similar to the L-G hamiltonian, is

H[s′] =
1

2

B∑
i k

(r + ck2)|s′ik|2

+
u

8Ld
∑
ij

B∑
{km}

s′ik1
s′ik2

s′jk3
s′jk4

δ(k1 + k2 + k3 + k4),

and H1[s′, s′′] contains the remaining part in H[s]. Clearly, H1[s′, s′′] is pro-
portional to u. Therefore it is treated as a perturbation. When the four
summations in the quartic term is split into two groups, there are a total of
sixteen terms. In one of them, all km (1 ≤ m ≤ 4) belong to the kB group
and that term is accounted in H[s′]. The remaining fifteen terms are retained
in H1[s′, s′′]. Thus, at least on summation in H1[s′, s′′] contains s′′ik terms. In
fact H1[s′, s′′] can be written as

H1[s′, s′′] =
u

8Ld
∑
ij

∑
{km}

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4), (6.1)

where (i) at least one of the km (1 ≤ m ≤ 4) belongs to the kA group and
hence the corresponding sik is s′′ik, (ii) each km can be either in the kA group
or in the kB group and hence each sik can be either s′′ik or s′ik. With these
specifications, it is clear that H1[s′, s′′] contains fifteen terms.

Now, the new hamiltonian can be defined as

exp(−H ′[s]− ALd) =
∫

exp(−H[s′]−H0[s′′]−H1[s′, s′′])
∏
i kA

ds′′ik

= exp(−H[s′])
∫

exp(−H0[s′′]−H1[s′, s′′])
∏
i kA

ds′′ik,

s′ik → sik′q
1−η/2, k′ = qk.

where H[s′] has been taken outside the integral since it does not contain the
integration variable s′′ik. Using the notation

< · · · > =
1

Z0

∫
exp(−H0[s′′] )(· · ·)

∏
i kA

ds′′ik,

Z0 =
∫

exp(−H0[s′′])
∏
i kA

ds′′ik,

for the averages, one gets

exp(−H ′[s]− ALd) = exp(−H[s′]) < exp(−H1[s′, s′′]) > Z0,

s′ik → sik′q
1−η/2, k′ = qk.
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Thus the new hamiltonian is given by

H ′[s] + ALd = H[s′]− ln < exp(−H1[s′, s′′]) > − ln(Z0),

s′ik → sik′q
1−η/2, k′ = qk.

Now, it is necessary to absorb all terms independent of sik′ in A since H ′[s]
should be zero when sik′ = 0. Hence H ′[s] is rewritten as

H ′[s] = H[s′]− ln < exp(−H1[s′, s′′]) >

+ ln < exp(−H1[0, s′′]) >, (6.2)

s′ik → sik′q
1−η/2, k′ = qk.

Then, the free energy density A is given by

ALd = − ln < exp(−H1[0, s′′]) > − ln(Z0).

The last term, ln(Z0), has already been calculated in connection with the
Gaussian model. Use of that result yields

ALd = − ln < exp(−H1[0, s′′] ) > −n
2

A∑
k

ln
( 2π

r + ck2

)
.

The terms in H ′[s] can be now analyzed one by one.

(A). Term H[s′]

The explicit form of H[s′] is

H[s′] =
1

2

B∑
i k

(r + ck2)|s′ik|2

+
u

8Ld
∑
ij

B∑
{km}

s′ik1
s′ik2

s′jk3
s′jk4

δ(k1 + k2 + k3 + k4),

where s′ikm
is to be replaced with sik′mq

1−η/2, k′m = qkm. If km is in kB group,
then k′m takes values in the full range 0 ≤ k ≤ Λ. Therefore one finds

H[s′] =
1

2

∑
i k′≤Λ

(r + cq−2k′2)q2−η|sik′ |2

+
u q4−2η

8(L′q)d
∑
ij

∑
{k′m}≤Λ

sik′1sik′2sjk′3sjk′4δ(k
′
1 + k′2 + k′3 + k′4),

where the substitutions km = k′m/q and L = qL′ have been made. Thus

H[s′] =
1

2

∑
i k≤Λ

(rq2−η + cq−ηk2)|sik|2 (6.3)
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+
u q4−d−2η

8L′d
∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4),

where the dummy variable k′m has been replaced by km.

(B). Term − ln < exp(−H1[s′, s′′]) > + ln < exp(−H1[0, s′′]) >

Assuming u to be small, to second order accuracy in u, one finds

ln < exp(−H1[s′, s′′]) > = ln
[
1− < H1[s′, s′′] >

+
1

2
< H2

1 [s′, s′′] > +O(u3)
]

= − < H1[s′, s′′] > +
1

2
< H2

1 [s′, s′′] >

− 1

2
< H1[s′, s′′] >2 +O(u3).

In the last expression, ln(1 + x) is approximated as x − x2/2 + O(x3). In a
similar way

ln < exp(−H1[0, s′′]) > = − < H1[0, s′′] > +
1

2
< H2

1 [0, s′′] >

− 1

2
< H1[0, s′′] >2 +O(u3).

The two expressions give

− ln < exp(−H1[s′, s′′]) > + ln < exp(−H1[0, s′′]) >

= < H1[s′, s′′] > − < H1[0, s′′] >

− 1

2

(
< H2

1 [s′, s′′] > − < H2
1 [0, s′′] >

)
+

1

2

(
< H1[s′, s′′] >2 − < H1[0, s′′] >2

)
+O(u3).

Now, let H̃1 be defined as

H̃1[s′, s′′] = H1[s′, s′′]−H1[0, s′′]. (6.4)

Then, the previous expression becomes

− ln < exp(−H1[s′, s′′]) > + ln < exp(−H1[0, s′′]) >

= < H̃1[s′, s′′] > −1

2

(
< H̃2

1 [s′, s′′] > − < H̃1[0, s′′] >2
)

(6.5)

−
(
< H̃1[s′, s′′]H̃1[0, s′′] > − < H̃1[s′, s′′] >< H̃1[0, s′′] >

)
+O(u3).
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All the four km’s in H̃1[s′, s′′] do not belong to the kA group. In fact, all km’s
in H1[0, s′′] are in the kA group. Thus H̃1[s′, s′′] represents fourteen terms out
of the fifteen terms in H1[s′, s′′]. Using Eqs. (6.2), (6.3) and (6.5), the new
hamiltonian can be written as

H ′[s] =
1

2

∑
i k≤Λ

(rq2−η + cq−ηk2)|sik|2 (6.6)

+
u q4−d−2η

8L′d
∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4)

+ < H̃1[s′, s′′] > −1

2

(
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
)

−
[
< H̃1[s′, s′′]H̃1[0, s′′] > − < H̃1[s′, s′′] >< H̃1[0, s′′] >

]
+O(u3).

After calculating the averages, the renormalization of the Fourier amplitudes
is to be effected with the replacement s′ik → sik′q

1−η/2. The averages to be
calculated are with the Gaussian distribution exp(−H0). So the following
properties are useful.

6.1.1 Averaging with exp(−H0[s′′])

(i) First of all, note that

< s′′ik1
> =

1

Z0

∫
exp(−H0[s′′])s′′ik1

A∏
i k

ds′′ik

=
1

Z01

∫
exp

[
− 1

2
(r + ck2

1)|s′′ik1
|2
]
s′′ik1

ds′′ik1
,

where Z01 is given by

Z01 =
∫

exp
[
− 1

2
(r + ck2

1)|s′′ik1
|2
]
ds′′ik1

.

On separating s′′ik1
to real and imaginary parts, one easily finds that the aver-

age < s′′ik1
>= 0.

(ii) In a similar way, it can be shown that

< s′′ik1
s′′jk1

> = 0 for i 6= j,

< s′′ik1
s′′ik2

> = 0 for k1 + k2 6= 0.

For k2 = −k1, the amplitudes are complex conjugates and hence

< s′′ik1
s′′i −k1

> =
1

Z0

∫
exp

[
− 1

2
(r + ck2

1)|s′′ik1
|2
]
|s′′ik1
|2ds′′ik1

= 2

∫
x2 exp[(r + ck2

1)x2]dx∫
exp[(r + ck2

1)x2]dx
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= 2
(
√
π/2)(r + ck2

1)−3/2

√
π(r + ck2

1)−1/2

= (r + ck2
1)−1.

Thus, the general result is

< s′′ik1
s′′jk2

> = δijδ(k1 + k2)G0(k1),

G0(k1) = (r + ck2
1)−1.

(iii) Another property is that

< s′′ik1
s′′ik2
· · · s′′ik2l+1

>= 0.

(iv) When there are an even number of terms in the product,

< s′′ik1
s′′ik2
· · · s′′ik2l

>

=
∑

all pairs

< s′′ik1
s′′ik2

>< s′′ik3
s′′ik4

> · · · < s′′ik2l−1
s′′ik2l

> .

Thus, for example

< s′′ik1
s′′ik2

s′′ik3
s′′ik4

> = < s′′ik1
s′′ik2

>< s′′ik3
s′′ik4

>

+ < s′′ik1
s′′ik3

>< s′′ik2
s′′ik4

>

+ < s′′ik1
s′′ik4

>< s′′ik2
s′′ik3

> .

With these results, the renormalised hamiltonian in the first order approxi-
mation can be calculated easily.

6.2 First Order Approximation to H ′[s]

At this order of approximation, it is enough to calculate < H̃1[s′, s′′] >. From
Eqs. (6.1) and (6.4), one finds

H̃1[s′, s′′] =
u

8Ld
∑
ij

∑
{km}

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4),

where, (i) at least one of the km(1 ≤ m ≤ 4) is in the kA group, (ii) at least
one of the km is in the kB group, and (iii) each km can be either in the kA
group or in the kB group. Note that if only one km is in the kA group, then
< H̃1 >= 0. Similarly, if three km are in the kA group, then again < H̃1 >= 0.
There is no possibility of all four km appearing in the kA group. Thus it is
enough to consider the case of two km in the kA group. Out of the four km, two
in the kA group can be chosen 4C2 = 6 ways. That is, any one of the pairs,
(k1k2), (k1k3), (k1k4), (k2k3), (k2k4) or (k3k4) can be in the kA group. Also note
that if the pair (k1k2) is in the kA group, then the pair (k3k4) is in the kB
group. Therefore < H̃1 > is found to be
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< H̃1 > =
u

8Ld
∑
ij

[ A∑
k1k2

< s′′ik1
s′′ik2

>
B∑

k3k4

s′jk3
s′jk4

(6.7)

+
A∑
k1k3

< s′′ik1
s′′jk3

>
B∑
k2k4

s′ik2
s′jk4

+
A∑
k1k4

< s′′ik1
s′′jk4

>
B∑
k2k3

s′ik2
s′jk3

+
A∑
k2k3

< s′′ik2
s′′jk3

>
B∑
k1k4

s′ik1
s′jk4

+
A∑
k2k4

< s′′ik2
s′′jk4

>
B∑
k1k3

s′ik1
s′jk3

+
A∑
k3k4

< s′′jk3
s′′jk4

>
B∑
k1k2

s′ik1
s′ik2

]
δ(k1 + k2 + k3 + k4).

Since the variables in the summation are dummy variables, one finds that the
first and last terms are the same while the remaining four are similar to each
other. That means

< H̃1[s′, s′′] > =
u

8Ld
∑
ij

[
2

A∑
k1k2

< s′′ik1
s′′ik2

>
B∑
k3k4

s′jk3
s′jk4

+ 4
A∑
k1k3

< s′′ik1
s′′jk3

>
B∑
k2k4

s′ik2
s′jk4

]
δ(k1 + k2 + k3 + k4).

Substitution of the expressions for the averages leads to

< H̃1 > =
u

8Ld
∑
ij

[
2

A∑
k1k2

δiiδ(k1 + k2)G0(k1)
B∑
k3k4

s′jk3
s′jk4

+ 4
A∑
k1k3

δijδ(k1 + k3)G0(k1)
B∑
k2k4

s′ik2
s′jk4

]
δ(k1 + k2 + k3 + k4).

On simplifying the sums one gets

< H̃1 > =
u

8Ld

[
2n

A∑
k1

G0(k1)
∑
j

B∑
k3

|s′jk3
|2

+ 4
A∑
k1

G0(k1)
∑
i

B∑
k2

|s′ik2
|2
]
.

Since both terms are of the same type, they can be rewritten as

< H̃1 >=
u

8Ld
(2n+ 4)

A∑
k1

G0(k1)
B∑
ik2

|s′ik2
|2.

With the replacement s′ik2
→ sik′2q

1−η/2, k′2 = qk2 runs over the full k-space
and hence

< H̃1[s′, s′′] >=
u

8
(2n+ 4)

∑
i k≤Λ

|sik|2q2−η[
1

Ld

A∑
k1

G0(k1)].
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Thus, in the first order approximation, Eq.(6.6) for H ′[s] becomes

H ′[s] =
1

2

∑
i k≤Λ

(rq2−η + cq−ηk2)|sik|2 (6.8)

+
u

8L′d
q4−d−2η

∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4)

+
u q2−η

8
(2n+ 4)

∑
i k≤Λ

|sik|2[
1

Ld

A∑
k1

G0(k1)] +O(u2).

The above expression looks exactly like the starting L-G hamiltonian. In terms
of the parameter set µ′ = (r′, u′, c′), it can be rewritten as

H ′[s] =
1

2

∑
i k≤Λ

(r′ + c′k2)|sik|2

+
u′

8L′d
∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4) +O(u2).

Thus the transformation equations of the parameters are

r′ = rq2−η +
u

4
(2n+ 4)q2−η[L−d

A∑
ik1

G0(k1)] +O(u2),

u′ = uq4−d−2η +O(u2),

c = cq−η +O(u2).

The thermodynamic limit is obtained with the replacement

1

Ld

A∑
k1

G0(k1)→ 1

(2π)d

A∫
G0(k1)dk1,

where the superscript on the integral denotes that it is over the range of the
kA group. Thus, the transformations reduce to

r′ = q2−η
[
r +

u

2

n+ 2

(2π)d

A∫
G0(k1)dk1

]
+O(u2),

u′ = uq4−d−2η +O(u2),

c′ = cq−η +O(u2).

As seen earlier, for these equations (defining Rq) to have a fixed point, η
should be chosen as zero and hence c′ = c. The other two equations show that
the fixed point values of r and u are r∗ = u∗ = 0. Noting that

G0(k1) =
1

r + ck2
1

,
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and linearising around µ∗ = (0, 0, c), one gets

∆r′ = q2
[
∆r +

∆u

2

n+ 2

(2π)d

A∫ dk1

ck2
1

]
+O(u2),

∆u′ = ∆uq4−d +O(u2),

where terms like (∆r∆u) and higher order terms are neglected. The integral
can be evaluated as

1

(2π)d

A∫ dk1

k2
1

= κd

Λ∫
Λ/q

kd−1
1

k2
1

dk1 = κd
Λd−2

d− 2
(1− q2−d),

where κd = (2π)−d2πd/2Γ(d/2). The linearised transformations are thus given
by

∆r′ = q2
[
∆r +

∆u

2c
(n+ 2)κd

Λd−2

d− 2
(1− q2−d)

]
+O(u2),

∆u′ = ∆uq4−d +O(u2).

The eigenvalues of the matrix are ρ1 = q2 and ρ2 = q4−d. Note that these re-
sults are exactly the same as those obtained with Wilson’s recursion formulae.
However, they have been derived here without the ad hoc assumptions in the
derivation of the recursion formulae. Thus one concludes that these results
are appropriate for d > 4 and they yield Landau’s theory exponents.

6.2.1 Effect of s6 in H ′[s]

Suppose an additional term

v
∫
V

s6(x)dx =
v

L2d

∑
ijl

∑
k1···k6≤Λ

sik1 · · · slk6δ(k1 + · · ·+ k6),

is added to the L-G hamiltonian. Then, the recursion relations are

r′ = rq2−η +D1u+D2v +O(u2) +O(v2),

u′ = uq4−d−2η + E1v +O(u2) +O(v2),

v′ = vq6−2d−3η +O(u2) +O(v2),

c′ = cq−η +O(u2) +O(v2),

where D1, D2, and E1 are dependent on r. They show that η should be chosen
to be zero and the fixed point values are r∗ = u∗ = v∗ = 0. The eigenvalues
of the linearised transformation are given by

ρ1 = q2, ρ2 = q4−d, ρ3 = q6−2d.
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H̃1[s′, s′′] =
��

@@

@@

��

sik1

sik2

sjk3

sjk4

Figure 6.1: Diagram for H̃1.

Thus, all the eigenvalues, except ρ1 are less than unity for d > 4. In fact,
one can start with a very general hamiltonian containing all even powers of s
and reach the conclusion that the fixed point µ∗ = (0, 0, · · · , c) is appropriate
for d > 4. The corresponding fixed point hamiltonian is

∫
c(∇s)2dx and

the exponents are the same as those of Landau’s theory. The first order
approximation is inappropriate for d ≤ 4. For instance, ρ2 = 1 for d = 3. The
next higher order approximation is necessary to find a suitable fixed point for
d ≤ 4.

6.2.2 Diagramatic Method

The main result of the first order approximation is the expression for < H̃1 >
given in Eq.(6.7). A diagramatic method for obtaining the same result is
developed below. A diagram representing H̃1 is constructed in the following
way. Make a broken line representing the factor u in H̃1. At each end of the
line, put two solid lines. Thus there are a total of four solid lines. The two
solid lines at one end denote sik1 and sik2 . The diagram so obtained for H̃1

is shown in Figure 6.1. The delta function in H̃1 shows that the sum of the
wave vectors in the diagram should be zero. Recall that out of the four s
terms, at least one should be s′ and another should be s′′. Each km can be
either in the kA group or in the kB group. Hence each solid line can represent
a s′ or a s′′. Now, it is possible to choose one s′ in 4C1 = 4 ways, two s′ in
4C2 = 6 ways and three s′ in 4C3 = 4 ways. Thus the total of 4 + 6 + 4 = 14
ways represent the fourteen terms in H̃1. In < H̃1 >, there will not be any s′′.
In fact, they are averaged with the Gaussian distribution exp(−H0[s′′]). The
rules for finding the averages with the Gaussian distribution can be translated
to the diagramatic language in the following way.

Rule 1 Any solid line representing a s′′ should be connected to another
solid line representing a different s′′.

If there is only one s′′, then according to this rule, it can not be connected.
Thus there is no contribution to < H̃1 > if there is only one s′′. Similarly, in
the case when there are three s′′, there is no contribution to the average since
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Figure 6.2: Diagrams in < H̃1[s′, s′′] >.

one of the s′′ always remains unconnected. If there are two s′′, there are six
ways of choosing them and by using rule-1, one obtains the six diagrams shown
in Figure 6.2. Each diagram gives a contribution to < H̃1 >. The diagrams,
in the order, represent the six terms in < H̃1 > given explicitly in Eq.(6.7).
In the first and last diagrams, there are closed loops, i.e. starting from any
point on the loop, one can come back to the same point without going over
the broken line representing u. The corresponding terms in Eq.(6.7) have a
factor n. This observation leads to the second rule.

Rule 2 The closed loop contributes a weight n (number of order parameter
components) and the open loop contributes a weight unity to the average.

On applying this rule one finds that there is a factor (2n + 4) in < H̃1 >.
The remaining factors in it can be obtained by explicitly writing down the
contribution from any of the diagrams using rule-3.

Rule 3 If two solid lines representing two s′′ (say, s′′ik1
and s′′jk2

) are

connected , then, replace s′′ik1
s′′jk2

in H̃1 by δijG0(k1)δ(k1 + k2).

Applying this rule to the first diagram in Figure 6.2, one finds that

∑
ij

A∑
k1k2

B∑
k3k4

s′′ik1
s′′ik2

s′jk3
s′jk4

δ(k1 + k2 + k3 + k4)

→
∑
ij

A∑
k1k2

B∑
k3k4

δijG0(k1)δ(k1 + k2)s′jk3
s′jk4

δ(k1 + k2 + k3 + k4),

= n
∑
j

B∑
k3

|s′jk3
|2

A∑
k1

G0(k1).

Now, replacing the factor n, which has come because the first diagram has a
closed loop, with (2n+ 4) and putting the constant factor (u/8)L−d leads to

< H̃1[s′, s′′] >=
u

8Ld
(2n+ 4)

B∑
jk3

|s′jk3
|2

A∑
k1

G0(k1),

which is same as the result obtained earlier. In the first order approximation,
there are only six terms in < H̃1 > and every step can be written down
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H̃1
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Figure 6.3: Diagram for H̃2
1 .

explicitly. But, for calculating the second order terms, the rules formulated
above turn out to be essential.

6.3 Second Order Approximation to H’[s]

Now, terms in the last two square brackets in Eq.(6.6) are to be calculated.
First of all, consider the first square bracket.

(A). 1
2

[
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
]

The term < H̃1 > is already calculated. So one has

1

2
< H̃1[s′, s′′] >2=

1

2
(
u

8
)2(2n+ 4)2

[ B∑
ik1

|s′jk1
|2
]2[
L−d

A∑
k2

G0(k2)
]2
,

For 1
2
H̃2

1 , the expression is

1

2
H̃2

1 [s′, s′′] =
1

2
(
u

8
)2L−2d

∑
ij

∑
{kx}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4)

×
∑
lm

∑
{ky}≤Λ

slk5slk6smk7smk8δ(k5 + k6 + k7 + k8).

The diagram for H̃2
1 is shown in Figure 6.3 where each broken line represents

a factor u. Each solid line can represent a s′ or s′′. There should be at
least one s′ and one s′′ in each part of the diagram. The sum of the wave
vectors of each part should be zero. To calculate the average, the wave vector
sets (k1,k2,k3,k4) and (k5,k6,k7,k8) are denoted as group-1 and group-2
respectively. Table 6.1 shows the various ways of choosing s′′ terms in group-1
and group-2.

From there, it is clear that the cases to be considered are (N1, N2) =
(1, 1), (2, 2) and (3, 3) where N1 and N2 are the number of k’s (with values
in the kA range) belonging to group-1 and group-2 respectively. There are
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Table 6.1: Various Choices of s′′.

N1=Number of k in the kA range belonging to group-1.
N2=Number of k in the kA range belonging to group-2.
N3=Total number of k in the kB range.

N1 N2 N3 Remarks

1 1 6 6 s′ after averaging. Hence a term s6 in H ′.
1 2 5 Odd no. of k in kA group. No contribution.
1 3 4 No contribution (see discussion below).
2 1 5 Odd no. of k in kA group. No contribution.
2 2 4 4 s′ after averaging. Hence a term s6 in H ′.
2 3 3 Odd no. of k in kA group. No contribution.
3 1 4 No contribution (see discussion below).
3 2 3 Odd no. of k in kA group. No contribution.
3 3 2 2 s′ after averaging. Hence a term s2 in H ′.
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jk3

s′
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s′′
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s′
lk6

s′′
mk7

s′′
mk8

Figure 6.4: One way of connecting two s′′ in group-2.

no contributions to the average from the cases (N1, N2) = (1, 3) and (3, 1)
due to the following reason. When (N1, N2) = (1, 3), there will be one s′′ in
group-1 and three s′′ in group-2. Every s′′ should be connected to another s′′

to obtain a non-zero contribution. Therefore, in group-2 itself, two s′′ are to
be connected. A possible way of making this connection, shown in Figure 6.4,
leads to k7 +k8 = 0. This further leads to k5 +k6 = 0 so that the total sum is
zero. But, this condition can not be satisfied since k5 is in the kA group and k6

is in the kB group. Thus, the case (N1, N2) = (1, 3) and, in a similar manner,
(N1, N2) = (3, 1) do not contribute to the average. The case (N1, N2) = (1, 1)
yields six s′ terms after averaging and hence leads to a term

∫
s6dx in the

new hamiltonian. This is the way new types of terms are generated by the
RG transformation. This term is not considered since the transformation of
interest is that of the parameter set µ = (r, u, c) in the L-G hamiltonian. Thus
it is sufficient to consider the cases (N1, N2) = (2, 2) and (3, 3).
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Figure 6.5: A typical Diagram in H̃2
1 [s′, s′′].
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Figure 6.6: A set of diagram in < H̃2
1 [s′, s′′] >.

Case (N1, N2) = (2, 2)

In this case, there are two s′′ in group-1 and group-2. A typical diagram for
H̃2

1 is shown in Figure 6.5. First of all, the s′′ terms in group-1 and group-2
can be connected among themselves. Various connected diagrams obtained in
this way are shown in Figure 6.6. As seen from the calculation of < H̃1 >,
each diagram contributes a factor

t =
u

8Ld

B∑
jk3

|s′jk3
|2

A∑
k1

G0(k1).

Using the rule that a closed loop has a weight n and an open loop has a weight
unity, the total weight is found to be

n(2n+ 4) + 1(2n+ 4) + · · ·n(2n+ 4) = (2n+ 4)2.

Thus the above way of pairing yields

t1 = (
u

8
)2L−2d(2n+ 4)2

[ B∑
jk3

|s′jk3
|2
]2[ A∑

k1

G0(k1)
]2
.

Note that this contribution is just < H̃1 >
2. Thus pairing of s′′ terms among

themselves yields a contribution which cancels with − < H̃1 >
2.
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Figure 6.7: Diagrams in < H̃1[s′, s′′]2 >.

Now, consider the ways of connecting a s′′ from group-1 with another one
in group-2. Two s′′ in group-1 can be chosen in 4C2 = 6 ways. In two cases,
both s′′ are at one of the ends of the broken line. Similarly, two s′′ can be
chosen in group-2 at the end of the broken line in two ways. When these s′′

are connected together, one gets closed loops. In each case, the ends of the
joining lines can be interchanged to give another way of connection (r.h.s of
Figure 6.7). Thus a total of 2× 2× 2 = 8 closed loops are obtained.

The contribution from any of the diagrams, say the first one, is

Dia− 1 =
∑
ijlm

B∑
k1k2k7k8

s′ik1
s′ik2

s′mk7
s′mk8

×
A∑

k3k4k5k6

δ(k3 + k5)δjlG0(k3)δ(k4 + k6)δjl

× G0(k4)δ(k1 + · · ·+ k4)δ(k5 + · · ·+ k8).

Noting that
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δ(k1 + k2 + k3 + k4)δ(−k3 − k4 + k7 + k8)

= δ(k1 + k2 + k7 + k8)δ(−k3 − k4 + k7 + k8),

one gets

Dia− 1 = n
∑
im

B∑
k1k2k7k8

s′ik1
s′ik2

s′mk7
s′mk8

δ(k1 + k2 + k7 + k8)

×
A∑
k3k4

δ(−k3 − k4 + k7 + k8)G0(k3)G0(k4). (6.9)

Now, consider the case when two s′′ in group-1 is at one end of the broken
line and the two s′′ in group-2 are at different ends of the broken line. The
first arrangement can be done in 2 ways while in the second there are 4 ways.
Thus there are 2 × 4 × 2 = 16 (the last 2 is for interchange of ends of the
joining lines) ways. In a similar way, the s′′ in group-1 can be put at different
ends of the broken line while the s′′ in group-2 are at the same end of the
broken line. This gives another 16 ways of making connections. Thus a total
of 32 ways of connections are obtained. Eight of these cases are shown in
Figure 6.8. Another 8 diagrams arise by choosing for s′′ the solid lines at the
left of the broken line of group-1. Then a similar 16 diagrams result with two
s′′ at the same end of the broken line of group-2.

Now the two s′′ of group-1 and group-2 can be put at different ends of the
broken lines. There are four ways of doing this in each group, thus 4×4×2 = 32
(the last factor 2 is for interchange of ends of the joining lines) diagrams are
obtained. Eight of these are shown in Figure 6.9. The remaining 24 comes
from the other three ways of choosing s′′ in group-1. The 64 diagrams (32+32)
obtained are not closed loops and hence each yields a weight unity. The first
diagram in Figure 6.9 yields

Dia− 1 =
∑
ijlm

B∑
k1k3k5k7

s′ik1
s′jk3

s′lk5
s′mk7

×
A∑

k2k4k6k8

δ(k2 + k8)δimG0(k2)δ(k4 + k6)δjl

× G0(k4)δ(k1 + · · ·+ k4)δ(k5 + · · ·+ k8)

=
∑
im

B∑
k1k3k5k7

s′ik1
s′ik7

s′jk3
s′jk5

δ(k1 + k3 + k5 + k7)

×
A∑
k2k4

δ(+k5 + k7 − k2 − k4)G0(k2)G0(k4). (6.10)
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Figure 6.8: Diagrams in < H̃1[s′, s′′]2 >.
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Figure 6.9: Diagrams in < H̃1[s′, s′′]2 >.
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Eqs.(6.9) and (6.10) are exactly of the same type. On substituting the factors
(8n + 64) and (u/8)2L−2d, the contribution from the case (N1, N2) = (2, 2) is
found to be

1

2

[
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
]
(with four s′ terms)

=
1

2
(
u

8
)2L−2d(8n+ 64)

∑
ij

B∑
k1k2k3k4

s′ik1
s′ik2

s′jk3
s′jk4

× δ(k1 + k2 + k3 + k4)v(k3,k4), (6.11)

where the term v(k3,k4) is given by

v(k3,k4) =
A∑
k5k6

G0(k5)G0(k6)δ(k3 + k4 − k5 − k6).

But for the dependence of v on k3 and k4 and the range of wave vectors (which
are in the kB group), the expression in Eq.(6.11) is identical to the quartic
term in H[s]. To bring it to the required form, v(k3,k4) may be approximated
by its value at k3 = k4 = 0. That is,

v(k3,k4) ≈ v(0, 0) =
A∑
k5

G2
0(k5).

Thus Eq.(6.11) reduces to

1

2

[
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
]
(with four s′ terms)

=
1

2
(
u

8
)2L−2d(8n+ 64)

∑
ij

B∑
k1k2k3k4

s′ik1
s′ik2

s′jk3
sjk4

× δ(k1 + k2 + k3 + k4)
A∑
k5

G2
0(k5). (6.12)

The exercise just completed has to be repeated for the case (N1, N2) = (3, 3).

Case (N1, N2) = (3, 3)

Here there are three s′′ in each group. As explained earlier, if two s′′ of the
same group are connected, then the wave vector sum of that group can not be
zero. Hence every s′′ of group-1 should be connected to a s′′ of group-2. Three
s′′ of each group can be chosen in 4C3 = 4 ways. With a particular choice of
s′′ in group-1 and group-2, six ways of connection can be established. This
includes the factor two arising out of the possibility of interchange of ends of
the joining lines. Thus the total factor coming up from all ways of connections
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Figure 6.10: Diagrams in < H̃1[s′, s′′]2 >.

is 4×4 = 16 times the factor obtained from a particular choice of s′′ in group-1
and group-2. The diagrams resulting from a specific choice of s′′ are shown in
Figure 6.10. Here, there are two closed loops and four open loops thus giving
a factor (2n + 4). Then the total factor is 16(2n + 4). The first diagram of
Figure 6.10 can be evaluated as

Dia− 1 =
∑
ijlm

B∑
k4k6

s′jk4
s′lk6

A∑
k1k2k3k5k7k8

δ(k2 + k8)δimG0(k2)

× δ(k3 + k5)δjlG0(k3)δ(k1 + k7)δim

× G0(k1)δ(k1 + · · ·+ k4)δ(k5 + · · ·+ k8)

= n
∑
j

B∑
k4

|s′jk4
|2

A∑
k1k2k3

G0(k1)G0(k2)G0(k3)

× δ(k4 + k1 + k2 + k3).

Defining w(k4) as

w(k4) =
∑

k1k2k3

G0(k1)G0(k2)G0(k3)δ(k4 + k1 + k2 + k3)

=
A∑
k1k2

G0(k1)G0(k2)G0(k4 + k1 + k2),

one gets

1

2

[
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
]

(with two s′ terms)

=
1

2
(
u

8
)2L−2d16(2n+ 4)

∑
i

B∑
k1

|s′ik1
|2w(k1).

Since G0(k1) = (r + ck2)−1, w depends only on |k1|. Further, w(k1) is an
even function of k1 as it is unaltered by changing k1 to −k1. Hence it may be
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Figure 6.11: Diagram for H̃1[s′, s′′]H1[0, s′′].

approximated as

w(k1) ≈ w(0)− k2
1w
∗,

where w(0) is given by

w(0) =
A∑
k2k3

G0(k2)G0(k3)G0(k2 + k3),

and w∗ is the coefficient of−k2
1 in [w(k1)−w(0)]. Thus with this approximation

for w(k1), one gets

1

2

[
< H̃2

1 [s′, s′′] > − < H̃1[s′, s′′] >2
]
(with two s′ terms)

=
1

2
(
u

8
)2L−2d16(2n+ 4)

∑
i

B∑
k1

|s′ik1
|2[w(0)− k2

1w
∗]. (6.13)

What remains to be computed is the last term in Eq.(6.6).

(B). < H̃1[s′, s′′]H1[0, s′′] > − < H̃1[s′, s′′] >< H1[0, s′′] >

Recall that H̃1[s′, s′′] is represented as a diagram with four solid lines and a
broken line and there should be at least one s′ and one s′′ in it. H1[0, s′′] also
can be represented using the same diagram, but now all the solid lines should
denote s′′. Thus the diagram for their product is as shown in Figure 6.11. To
find the average, all the solid lines representing s′′ should be connected. If there
is only one s′′ or three s′′ in H̃1[s′, s′′], then one of them remains unconnected
and the contribution to the average from such a case is zero. Hence the cases,
when there are two s′′ in H̃1[s′, s′′], alone are important. Then there are only
two s′ terms and hence the contribution is to the quadratic term in H ′[s].

The two s′′ of H̃1[s′, s′′] and the four s′′ of H1[0, s′′] can be connected among
themselves. Note that there are 4C2 = 6 ways of connecting the two s′′ of
H̃1[s′, s′′] and three ways of connecting the s′′ of H1[0, s′′]. The various dia-
grams arising in this way are represented in Figure 6.12. These diagrams are
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Figure 6.12: Diagram for < H̃1[s′, s′′] >< H1[0, s′′] >.
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Figure 6.13: Diagram for < H̃1[s′, s′′]H1[0, s′′] >.

just those obtained from a calculation of < H̃1[s′, s′′] >< H1[0, s′′] >. Hence
the contribution to < H̃1[s′, s′′]H1[0, s′′] > − < H̃1[s′, s′′] >< H1[0, s′′] >
arises only by connecting s′′ of H̃1[s′, s′′] with those of H1[0, s′′]. Notice that
two s′′ of H1[0, s′′] always have to be connected among themselves. First of
all, connect the two s′′ lines at one end of the broken line of H1[0, s′′]. The
resulting diagrams are shown in Figure 6.13. The weight of the first two is n2

each while others have a weight of n each. Thus the total weight is 2n2 + 4n.
Exactly the same thing can be done by connecting the s′′ lines on the other
side of the broken line in H1[0, s′′]. Then another factor of 2n2+4n is obtained.

Now, consider the case of connecting two s′′ of H1[0, s′′], one from each
end of the broken line. This can be done in four ways. On connecting the s′′

lines above the broken line, the diagrams in Figure 6.14 are obtained. Thus
two closed loops and four open loops, giving a factor 2n + 4, are obtained.
Exactly the same factor 2n+ 4 arises by connecting s′′ lines below the broken
line. Now connect the s′′ above the broken line to the one below. This yields



152 Renormalization Group Theory

�� �� �� �� �� ��

�� �� �� �� �� ��

@@ @@ @@ @@ @@ @@

@@ @@ @@ @@ @@ @@

�� �� �� �� �� ��

�� �� �� �� �� ��

@@ @@ @@ @@ @@ @@

@@ @@ @@ @@ @@ @@

� � � � � �

� � � � � �
A
A
A

A
A
A

A
A
A

Figure 6.14: Diagram for < H̃1[s′, s′′]H1[0, s′′] >.

the diagrams of Figure 6.15 which again give the factor 2n + 4. One more
possibility of similar connection yields another factor 2n+ 4. Thus the weight
obtained is 2(2n2+4n)+4(2n+4) = 4(n+2)2. However, an additional factor 2
is found by interchanging the ends of the joining lines in each of the diagrams.
Hence the total weight is 8(n + 2)2. The first diagram from Figure 6.15 can
be evaluated as

Dia− 1 =
∑
ijlm

B∑
k1k2

s′ik1
s′ik2

A∑
k3k4

A∑
k5k6k7k8

δ(k3 + k5)δjlG0(k3)

× δ(k4 + k8)δjmG0(k4)δ(k6 + k7)

× δlmG0(k6)δ(k1 + · · ·+ k4)δ(k5 + · · ·+ k8)

= n
∑
i

B∑
k1k2

s′ik1
s′ik2

A∑
k3k4

A∑
k6

G0(k3)G0(k4)G0(k6)

× δ(−k3 + k6 − k6 − k4)

= n
∑
i

B∑
k1

|s′ik1|
2
A∑
k3

G0(k3)2
A∑
k6

G0(k6).

This result yields

< H̃1[s′, s′′]H1[0, s′′] > − < H̃1[s′, s′′] >< H1[0, s′′] >

= (
u

8
)2L−2d8(n+ 2)2

∑
i

B∑
k1

|s′ik1
|2

A∑
k2

G2
0(k2)

A∑
k3

G0(k3). (6.14)

Final Result

Collecting together the results of Eqs.(6.12) (s′ 4 term), (6.13) (s′ 2 term)



Perturbation Theory 153

�� �� �� �� �� ��

�� �� �� �� �� ��

@@ @@ @@ @@ @@ @@

@@ @@ @@ @@ @@ @@

�� �� �� �� �� ��

�� �� �� �� �� ��

@@ @@ @@ @@ @@ @@

@@ @@ @@ @@ @@ @@

� � � �

� �

� �

A
A
A

Figure 6.15: Diagram for < H̃1[s′, s′′]H1[0, s′′] >.

and (6.14) (s′ 2 term) the second order term is obtained as

2nd order term =
1

2
(
u

8
)2L−2d(8n+ 64)

∑
ij

B∑
k1k2k3k4

s′ik1
s′ik2

s′jk3
s′jk4

× δ(k1 + k2 + k3 + k4)
A∑
k5

G2
0(k5)

+
1

2
(
u

8
)2L−2d16(2n+ 4)

∑
i

B∑
k1

|s′ik1
|2[w(0)− k2

1w
∗]

+ (
u

8
)2L−2d8(n+ 2)2

∑
i

B∑
k1

|s′ik1
|2

A∑
k2

G2
0(k2)

A∑
k3

G0(k3).

The last two steps of RG are effected by the replacements

s′ik → sik′q
1−η/2,k′ = qk, L′ = L/q.

The factor L−d is absorbed in the summation,
∑A
k (· · ·), since the continuum

limit is to be taken later. Thus one gets

2nd order term =
u

8

2

L′ −d
n+ 8

2
q4−d−2η

∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4

× δ(k1 + k2 + k3 + k4)[L−d
A∑
k5

G2
0(k5)]

+
u2

2

n+ 2

2
q2−η∑

i

∑
k1≤Λ

|sik1 |2{L−2d[w(0)− k2
1w
∗]}

+
u2

2

(n+ 2)2

4
q2−η∑

i

∑
k1≤Λ

|sik1 |2

× [L−d
A∑
k2

G2
0(k2)][L−d

A∑
k3

G0(k3)]. (6.15)
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Subtraction of Eq.(6.15) from Eq.(6.8) yields

H ′[s] =
1

2

∑
i k≤Λ

(rq2−η + cq−ηk2)|sik|2

+
u

8
(2n+ 4)

∑
i k≤Λ

|sik|2q2−η[L−d
A∑
ik1

G0(k1)]

− u2

2

n+ 2

2
q2−η ∑

i k1≤Λ

|sik1|2{L−2d[w(0)− k2
1w
∗]}

− u2

2

(n+ 2)2

4
q2−η ∑

i k1≤Λ

|sik1|2[L−d
A∑
k2

G0(k2)2][L−2d
A∑
k3

G0(k3)]

+ [
u

8
− u2

8

n+ 8

2
]L′ −dq4−d−2η

∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4

× δ(k1 + k2 + k3 + k4)[L−d
A∑
k5

G2
0(k5)] +O(u3).

It can be rewritten as

H ′[s] =
1

2

∑
i k≤Λ

(r′ + ck2)|sik|2

+
u′

8
L′ −d

∑
ij

∑
{km}≤Λ

sik1sik2sjk3sjk4δ(k1 + k2 + k3 + k4) +O(u3),

where the new parameters are defined as

r′ = q2−η
[
r +

u

2
(n+ 2){L−d

A∑
k1

G0(k1)} − u2

2
(n+ 2){L−2dw(0)}

− u2

4
(n+ 2)2{L−d

A∑
k1

G2
0(k1)}{L−d

A∑
k2

G0(k2)}
]

+O(u3).

u′ = q4−d−2η
[
u− u2

2
(n+ 8){L−d

A∑
k5

G2
0(k5)}

]
+O(u3),

c′ = q−η
[
c+

u2

2
(n+ 2){L−2dw∗}

]
+O(u3).

These equations define the recursion relations to second order accuracy. Now,
the continuum limit is taken by replacing L−d

∑A
k (· · ·) with the integral (2π)−d

∫ A(· · ·)dk.
The recursion relations then become

r′ = q2−η
[
r +

u

2
(n+ 2)(2π)−d

A∫
G0(k)dk− u2D

]
+O(u3),

u′ = q4−d−2η
[
u− u2

2
(n+ 8)(2π)−d

A∫
G2

0(k)dk
]

+O(u3),
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c′ = cq−η
[
1 + u2 ln(q)E

]
+O(u3),

where D is defined as

D =
n+ 2

2
(2π)−2d

A∫
dk1

A∫
dk2G0(k1)G0(k2)G0(k1 + k2)

+
(n+ 2)2

4
(2π)−d

A∫
dk1G

2
0(k1)(2π)−d

A∫
dk2G0(k2).

In obtaining this relation, the definition of w(0) has been used. Further, in
the expression for c′, E has been defined as

E =
n+ 2

2c ln(q)

w∗

L2d
.

Later it is shown that for large values of q (which is arbitrary), E is indepen-
dent of q. Since u is assumed to be small, c′ can be rewritten as

c′ = cq−ηqu
2E +O(u3).

6.4 Fixed Points of recursion Relations

The recursion relations derived in the previous section are similar to those
obtained using Wilson’s recursion formulae. Only one assumption, namely,
the parameter u is small, has been employed in the present derivation.

(i) Now, the parameter η can be chosen as η = u2E. Then there is a fixed
point µ∗ = (r∗, u∗, c∗) = (0, 0, c∗) where c∗ is arbitrary. Earlier it was shown
that this fixed point has appropriate properties for d > 4. In fact, one finds
that η = 0 since u∗ = 0. Then, linearising about µ∗, one gets

∆r′ = q2
[
∆r + ∆u

n+ 2

2
(2π)−d

A∫
G0(k)dk

]
,

∆u′ = qε∆u, ε = 4− d.

They yield y1 = 2 and y2 = ε and hence the Landau’s theory exponents for
d > 4. This fixed point is not appropriate for d ≤ 4.

(ii) Having fixed η = u2E, the recursion relations to be considered are

r′ = q2−η
[
r +

u

2
(n+ 2)(2π)−d

A∫
G0(k)dk− u2D

]
+O(u3),

u′ = q4−d−2η
[
u− u2n+ 8

2
(2π)−d

A∫
G2

0(k)dk
]

+O(u3).

The second equation yields a fixed point relation

1 = q4−d−2η
[
1− u∗n+ 8

2
(2π)−d

A∫
G2

0(k)dk
]

+O(u∗ 2).
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Introducing the notation, κd=(area of unit sphere)×(2π)−d, u∗ is found to be

u∗ = (1− q−ε+2η)
2

n+ 8
κ−1
d

[ Λ∫
Λ/q

kd−1dk

(r∗ + ck2)2

]−1
+O(u∗ 2).

The equation for r′ shows that

(1− q2−η)r∗ = q2−ηu
∗

2
(n+ 2)κd

Λ∫
Λ/q

kd−1dk

r∗ + ck2
+O(u∗ 2).

This means that the term −u2D in r′ does not contribute to the fixed point
value of r∗ accurate to O(u2). Further, note that the value of r∗ is of the order
of u∗. As discussed earlier, u∗ and r∗ should be small since they have been
obtained by a perturbation expansion. So (r∗ + ck2)−1 can be expanded in
powers of r∗. Keeping terms of O(u∗) = O(r∗), one gets

u∗ = (1− q−ε+2η)
2

n+ 8

1

κd

[ Λ∫
Λ/q

kd−1dk

c2k4
+O(r∗)

]−1
+O(u∗ 2)

= (1− q−ε+2η)
2

n+ 8

c2

κd

[ Λd−4

d− 4
(1− q4−d ) +O(r∗)

]−1
+O(u∗ 2)

= ε(q−ε+2η − 1)
2

n+ 8

c2

κd
Λ4−d

[
(1− qε) +O(εr∗)

]−1
+O(u∗ 2).

Since u∗ ∼ ε, it can be concluded that the perturbation expansion is mean-
ingful only for small values of ε. Therefore taking u∗ ∼ r∗ ∼ O(ε) one finds
that

u∗ = ε(q−ε+2η − 1)
2

n+ 8

c2

κd

Λ4−d

1− qε
+O(ε2).

The terms κd and Λ4−d (which depend on d) can be calculated at ε = 0, i.e.
at d = 4. Since η ∼ O(u∗ 2) ∼ O(ε2), u∗ reduces to

u∗ = εq−ε
2

n+ 8

c2

κ4

+O(ε2)

= εc2 2

n+ 8

1

κ4

+O(ε2).

Though the calculations were accurate to O(u2) ∼ O(ε2), the value of u∗ has
accuracy of O(ε) only. The exponent η is given by

η = u∗ 2E = ε2
[
c2 2

n+ 8

1

κ4

]2
E +O(ε3).
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Note that η ∼ O(ε2) and hence this exponent is relatively small. Now, since
η ∼ O(ε2), the value of r∗ can be written as

r∗ =
q2

1− q2

u∗

2
(n+ 2)

κd
c

Λ∫
Λ/q

kd−3dk +O(ε2).

All terms can be evaluated at d = 4 since u∗ ∼ O(ε). Then

r∗ =
q2

1− q2

u∗

2
(n+ 2)

κ4

c
Λ2 1− q−2

2
+O(ε2)

= −u
∗

2
(n+ 2)

κ4

c

Λ2

2
+O(ε2)

= −εcn+ 2

n+ 8

Λ2

2
+O(ε2).

Having obtained the fixed point values and η, the transformation equations
can be linearised to obtain the remaining exponents.

6.5 Exponents Accurate to O(ε)

In deriving the fixed points of the recursion relations, it is found that r∗ and
u∗ are of order ε = 4− d. Therefore, the recursion relations can be simplified
by expanding G0(k) in powers of r and keeping terms like O(u2), O(ru), etc.
In fact the implicit assumption is that r ∼ u ∼ O(ε) and terms up to O(ε2)
are to be retained. Since η ∼ O(ε2), the term q−η can be omitted from the
recursion relations. Now,

1

(2π)d

Λ∫
Λ/q

G0(k)dk = (2π)−d
Λ∫

Λ/q

[
1

ck2
− r

c2k4
]dk +O(r2)

=
κd
c

[ Λd−2

d− 2
(1− q2−d)− r

c

Λd−4

d− 4
(1− q4−d )

]
+O(r2).

In a similar way

1

(2π)d

Λ∫
Λ/q

G2
0(k)dk =

κd
c2

Λd−4

d− 4
(1− q4−d ) +O(r2).

Hence the recursion relations become

r′ = q2
[
r +

u

2
(n+ 2)

κd
c
{ Λd−2

d− 2
(1− q2−d)

− r

c

Λd−4

d− 4
(1− q4−d )} − u2D0

]
+O(u3),

u′ = qε
[
u− u2

2
(n+ 8)

κd
c2

Λd−4

d− 4
(1− q4−d )

]
+O(u3),
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where D0 is the value of D at r = 0. Now, note that

κd
Λd−4

d− 4
(1− q4−d ) = κd

Λ−ε

ε
(qε − 1) = κ4 ln(q) +O(ε),

κd
Λd−2

d− 2
(1− q2−d) = κ4

Λ2

2
(1− q−2) + Cε+O(ε2),

where C is some constant. The constant D0 can also be evaluated at d = 4
and it can be written as D0 = D00 +O(ε). Then, keeping terms up to O(ε2) =
O(u2) = O(ru), one finds

r′ = q2
[
r +

u

2
(n+ 2){κ4

Λ2

2c
(1− q−2) (6.16)

+ Cε− rκ4

c2
ln(q)} − u2D00

]
+O(ε3),

u′ = qε
[
u− u2

2
(n+ 8)

κ4

c2
ln(q)

]
+O(ε3). (6.17)

Note that these recursion relations yield the fixed points, r∗ and u∗ accurate
to O(ε), obtained earlier. For example,

u∗ =
2c2

κ4

1− q−ε

(n+ 8) ln(q)
+O(ε2)

=
2c2

κ4

ε

n+ 8
+O(ε2),

and therefore

(1− q2)r∗ =
u∗

2
(n+ 2)κ4

Λ2

2c
(1− q2) +O(ε2),

r∗ = −ε c
2

Λ2n+ 2

n+ 8
+O(ε2).

The transformation equations can be linearised by writing u′ = u∗ + ∆u′ etc.
On keeping terms up to ∆u, Eq.(6.17) yields

u∗ + ∆u′ = qε
[
u∗ + ∆u− (u∗ 2 + 2u∗∆u)

n+ 8

2

κ4

c2
ln(q)

]
+O(ε3).

That is

∆u′ = qε
[
1− 2u∗

n+ 8

2

κ4

c2
ln(q)

]
∆u+O(ε2)

= qε
[
1− 2ε ln(q)

]
∆u+O(ε2). (6.18)

The coefficient of ∆u (on the r.h.s) is accurate to O(ε) only. Thus the eigenval-
ues of the linearised transformation and hence the exponents are also accurate
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to O(ε) only. Eq.(6.16 ) shows that

r∗ + ∆r = q2
[
r∗ + ∆r + (u∗ + ∆u)

n+ 2

2
{κ4

Λ2

2c
(1− q−2) + Cε

− κ4

c2
(r∗ + ∆r) ln(q)} − (u∗ 2 + 2u∗∆u)D0

]
+O(ε3).

Keeping terms linear in ∆r and ∆u, one gets

∆r′ = q2
[
∆r{1− u∗n+ 2

2

κ4

c2
ln(q)}+ ∆u{n+ 2

2
κ4

Λ2

2c
(1− q−2)

+ Cε− r∗n+ 2

2

κ4

c2
ln(q)− 2u∗D0}

]
+O(ε2).

This relation also is accurate to O(ε) since u∗ has that accuracy. Substitution
of u∗ and r∗ yields

∆r′ = q2[1− ε ln(q)
n+ 2

n+ 8
]∆r

+ [
n+ 2

2

κ4

2c
Λ2(q2 − 1) +O(ε)]∆u+O(ε2). (6.19)

To first order accuracy in ε, Eqs.(6.18) and (6.19) can be written as

∆r′ = q2−ε(n+2)/(n+8)∆r + [B +O(ε)]∆u+O(ε2),

∆u′ = qεq−2ε∆u = q−ε∆u+O(ε2),

where

B =
n+ 2

2
κ4

Λ2

2c
(q2 − 1).

The linearised RG matrix is therefore given by

R̃q =

[
q2−ε (n+2)/(n+8) B +O(ε)

0 q−ε

]
.

Since the matrix is triangular, the eigenvalues are

ρ1 = qy1 = q2−ε(n+2)/(n+8),

ρ2 = qy2 = q−ε.

Hence y1 and y2 are given by

y1 = 2− εn+ 2

n+ 8
,

y2 = − ε.

Thus y1 is positive and y2 is negative for d < 4. Hence for d < 4, the fixed
point has the desired property. The parameter y1 is accurate to O(ε) and all
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the exponents can be computed using the scaling laws to this accuracy. Since η
is proportional to ε2, it should be taken as zero at this level of approximation.
The various exponents are

η = O(ε2),

ν =
1

2
+
ε

4

n+ 2

n+ 8
+O(ε2),

γ = 1 +
ε

2

n+ 2

n+ 8
+O(ε2),

α =
ε

2

4− n
n+ 8

+O(ε2),

β =
1

2
− 3

2

ε

n+ 8
+O(ε2),

δ = 3 + ε+O(ε2).

These results reduce to those obtained with Wilson’s recursion formulae when
n = 1. Now, by evaluating the constant E, η can be obtained to second order
accuracy.

6.6 Calculation of η to O(ε2)

The expression for the exponent η obtained earlier is η = u∗ 2E. Substituting
for u∗ one gets,

η = ε2
[ 2

κ4

c2

n+ 8

]2
E,

where E is given by

E =
n+ 2

2c ln(q)

w∗

L2d
.

Therefore η becomes

η = ε2
[ 2

κ4

c2

n+ 8

]2 n+ 2

2c ln(q)

w∗

L2d
.

Note that w∗ is proportional to the coefficient of −k2
1 in w(k1). Therefore the

expression

L−2d[w(k1)− w(0)]

= L−2d
A∑
k2k3

G0(k2)G0(k3)
[
G0(k1 + k2 + k3)−G0(k2 + k3)

]
,

can be calculated to O(k2
1), and then the coefficient of −k2

1 can be obtained.
Since η ∼ O(ε2), it is sufficient to evaluate w∗ at d = 4 and r∗ = 0. Further,
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taking the continuum limit with the replacement

L−d
A∑
k

(· · ·)→ (2π)−d
Λ∫

Λ/q

(· · ·)dk,

the integral to be computed is

I(k1)

=
1

(2π)8c3

Λ∫
Λ/q

dk2

Λ∫
Λ/q

dk3

[
k−2

2 k−2
3 {(k1 + k2 + k3)−2 − (k2 + k3)−2}

]
.

Then w∗ is given by
w∗

L2d
= − lim

k2
1→0

I(k1)

k2
1

.

Consider the integral over k3,

J1(k2) =
1

(2π)4

Λ∫
Λ/q

dk3k
−2
3 (k2 + k3)−2

=
1

(2π)4

Λ∫
Λ/q

dk3k
3
3

π∫
0

sin2(θ1)dθ1

π∫
0

sin(θ2)dθ2

×
2π∫
0

dφ
[
k−2

3 {k2
2 + k2

3 + 2k2k3 cos(θ1)}−1
]
.

Here, the polar coordinates in four dimension, defined as

k31 = k3 cos(θ1),

k32 = k3 sin(θ1) cos(θ2),

k33 = k3 sin(θ1) sin(θ2) cos(φ),

k34 = k3 sin(θ1) sin(θ2) sin(φ),

have been used. k3i (1 ≤ i ≤ 4) are the cartesian components of k3 and
θ1 is the angle between k3 and the unit vector i4. Hence k31 is k3 cos(θ1).
The projection of k3 perpendicular to the i1 axis is k3 sin(θ1) and it is a 3-
dimensional vector which is resolved in the usual manner. In writing the
integral J1, k2 is taken along the i1 axis and the four dimensional volume
element

dk3 = k3
3 sin2(θ1) sin(θ2)dk3dθ1dθ2dφ,

has been used. On multiplying the r.h.s with
∫ π
0 sin2(θ1)dθ1 = π/2, the angular

part of the integral can be factored out. Then, with the usual notation, one
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gets

J1(k2) =
2κ4

π

Λ∫
Λ/q

k3dk3

π∫
0

sin2(θ1)dθ1

[
k2

2 + k2
3 + 2k2k3 cos(θ1)

]−1
.

The last integral can be evaluated using the result
π∫

0

sin2(θ)[p+ q cos(θ)]−1dθ =
pπ

q2

(
1−

√
(p2 − q2)/p2

)
, p > q.

The final result is
π∫

0

sin2(θ1)dθ1

[
k2

2 + k2
3 + 2k2k3 cos(θ1)

]−1

=
π

4k2
2k

2
3

[k2
2 + k2

3 −
√

(k2
2 − k2

3)2]

=
π

4k2
2k

2
3

[k2
2 + k2

3 − (k2
2 − k2

3)] =
π

2k2
2

, k2 > k3 ,

=
π

4k2
2k

2
3

[k2
2 + k2

3 − (k2
3 − k2

2)] =
π

2k2
3

, k2 < k3.

Therefore, J1(k2) is found to be

J1(k2) =
2κ4

π

π

2

k2∫
Λ/q

k3
dk3

k2
2

+

Λ∫
k2

k3
dk3

k2
3

= κ4

[k2
2 − (Λ/q)2

2k2
2

+ ln(
Λ

k2

)
]
.

In a similar way, one gets

J1(k1 + k2) = κ4

[(k1 + k2)2 − (Λ/q)2

2(k1 + k2)2
+ ln(

Λ

|k1 + k2|
)
]
.

Therefore, I1(k1) becomes

I1(k1) =
1

(2π)4

1

c3

Λ∫
Λ/q

dk2[J1(k1 + k2)− J1(k2)]

=
κ4

(2π)4

1

c3

Λ∫
Λ/q

dk2

k2
2

[
(
Λ

q
)2 1

2
{k−2

2 − (k1 + k2)−2}+ ln(
|k2|

|k1 + k2|
)
]
.

Now, note that the curly bracket does not contribute for k1 < Λ/q. To see
this, consider

J1(k1) =
1

(2π)4

Λ∫
Λ/q

dk2

k2
2

(k1 + k2)−2.
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For k1 < Λ/q, J1 reduces to

J1(k1) = κ4

Λ∫
Λ/q

dk2k2 k
−2
2 =

1

(2π)4

Λ∫
Λ/q

dk2k
−2
2 k−2

2 ,

which cancels with the first term in the curly bracket in I1. Hence for small
k1, one gets

I1(k1) =
κ4

(2π)4

1

c3

Λ∫
Λ/q

dk2

k2
2

ln
[ |k2|
|k1 + k2|

]

=
κ4

(2π)4

1

2c3

Λ∫
Λ/q

dk2

k2
2

ln
[ k2

2

k2
1 + k2

2 + 2k1 · k2

]
.

For k1 << Λ/q, the logarithm can be expanded as

ln
[ k2

2

k2
1 + k2

2 + 2k1 · k2

]
= ln(k2

2)− ln(k2
1 + k2

2 + 2k1 · k2)

= − ln
[
1 +

k2
1

k2
2

+
2k1 · k2

k2
2

)
]

=
[k2

1

k2
2

+
2k1 · k2

k2
2

− 4(k1 · k2)2

2k4
2

+O(k3
1)
]
.

Thus I1(k1) reduces to

I1(k1) =
κ4

(2π)4

1

2c3

[
−

Λ∫
Λ/q

dk2
k2

1

k4
2

+ 2

Λ∫
Λ/q

dk2
(k1 · k2)2

k6
2

]

=
κ4

2c3

[
− κ4k

2
1

Λ∫
Λ/q

dk2

k2

+
2k2

1

(2π)4

Λ∫
Λ/q

dk2

k4
2

cos2(θ1)
]

=
κ4

2c3
k2

1

[
− κ4 ln(q) + 2

2κ4

π

Λ∫
Λ/q

dk2

k2

π∫
0

cos2(θ1) sin2(θ1)dθ1

]

=
κ4

2

1

c3
k2

1

[
− κ4 ln(q) + 2

2κ4

π
ln(q)

π

8

]
= −κ2

4k
2
1

ln(q)

4c3
+O(k3

1).

Therefore w∗ is given by
w∗

L2d
= κ2

4

ln(q)

4c3
,
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which yields

η = ε2
[ 2

κ4

c2

n+ 8

]2 (n+ 2)κ2
4

2c ln(q)

ln(q)

4c3
=
ε2

2

n+ 2

(n+ 8)2
+O(ε3).

Thus, the second order approximation yields a value of η proportional to
ε2. However, all the other exponents are accurate to O(ε) only. The reason is
that the second order approximation provides the fixed point u∗ accurate only
to O(ε). The value of r∗ could have been obtained to an accuracy of O(ε2).
Further improvements are possible if u∗ is calculated more accurately using
the third order approximation.
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Chapter 7

Real Space Renormalization
Group Methods

The applications of the renormalization group techniques to the Landau-
Ginzburg model were discussed in the last two chapters. A systematic pertur-
bation expansion, in the parameter ε = d−4 where d is the spatial dimension,
was developed there to calculate the critical exponents to first order accuracy.
These results showed that exponents are different from those given by Lan-
dau’s theory for d ≤ 4. Higher order calculations are necessary for obtaining
accurate values for d = 3. In any case, it would be difficult to get good results
for two dimensional systems in this manner.

The real space RG techniques are outlined in the present chapter. In these
methods, Kadanoff’s idea of coarse graining (in real space) is employed in
the first step of an RG calculation, i.e., reduction of degrees of freedom. In
Chapter 4, this approach was discussed in detail for the 1-D Ising model with
nearest neighbour interaction. There, the configurations of every alternate
spin, in the definition of the partition function, were summed up to obtain a
new system. This system turned out to be again an Ising model with nearest
neighbour interactions. However, this is not the case when a similar procedure
is attempted in higher dimensions. For example, if one starts with a 2-D Ising
model with nearest neighbour interactions and performs a reduction of degrees
of freedom by summing the configurations of a set of spins, the resulting
system is found to have additional types of interactions. Similar difficulty was
seen in the case of the L-G model, there, starting with a quartic term in the
hamiltonian, the RG procedure led to higher order terms. Thus, for the RG
approach to be useful, either the additional terms generated should be suitably
approximated or one should start with a sufficiently general hamiltonian. The
generation of additional coupling terms for the Ising model is demonstrated
first.

166
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Figure 7.1: Decimation of Square Lattice.

7.1 Need for General Hamiltonians

Consider the Ising hamiltonian for a 2-D square lattice. If there is no external
field, the hamiltonian with nearest neighbour (n.n) coupling is

H̃ = −H
T

= K2

∑
<i,j>

sisj,

where K2 is the strength of the n.n interaction. The probability distribution
of spin configurations is

P ({si}) =
1

Z
exp(H̃),

where the partition function Z is obtained by summing over the configurations
of all the spins, that is

Z =
∑
{si}

exp(H̃).

For the 2-D lattice (see Figure 7.1) , the hamiltonian can be rewritten as

H̃ = K2

∑
n

sn(sn1 + sn2 + sn3 + sn4).

Here, sn represents a spin marked with an open circle and sni (1 ≤ i ≤ 4)
denotes one of the four surrounding spins.

∑
n stands for summation over

the spins indicated by open circles. A new hamiltonian H̃ ′′ is now obtained
by making a partial summation of the configurations of {sn} in the partition
function. That is

exp(H̃ ′′) =
∑

{sn=±1}
exp(H̃).

Substituting for H̃, one gets

exp(H̃ ′′) =
∑

{sn=±1}
exp

[
K2

∑
n

sn{sn1 + · · ·+ sn4}
]
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=
∏
n

∑
sn=±1

exp
[
K2sn{sn1 + · · ·+ sn4}

]
=

∏
n

2 cosh
[
K2{sn1 + · · ·+ sn4}

]
.

The hamiltonian H̃ ′′ defined above will correspond to a lattice shown in figure
7.1 with filled circles. That is a square lattice rotated by 45os to the axes of
the original lattice, but the spacing is

√
2 times larger. Now, one tries to write

the term
tw = 2 cosh

[
K2{sn1 + · · ·+ sn4}

]
,

as an exponential function containing products of sni (1 ≤ i ≤ 4). Each of the
sni can take values ±1. Thus there are 24 = 16 configurations for these spins.
tw can take three values corresponding to

sn1 + · · ·+ sn4 =

 ±4
±2
0

Therefore it can be written as an exponential function containing at least three
parameters. More generally, tw is written as

tw = exp
[
K ′2(sn1sn2 + sn2sn3 + sn3sn4 + sn4sn1)

+ K ′′2 (sn1sn3 + sn2sn4) +K ′4(sn1sn2sn3sn4) + c
]
,

where K ′2 and K ′′2 represent the n.n and the next nearest neighbour (n.n.n)
coupling constants of the new lattice. Similarly, K ′4 denotes the four spin
coupling constant. No term containing the product of three spins is present
since H̃ is invariant w.r.t changing all si to −si and H̃ ′′ also should have the
same symmetry. Putting the values for sni , one gets

2 cosh(4K2) = exp(4K ′2 + 2K ′′2 +K ′4 + c),

2 cosh(2K2) = exp(0 + 0−K ′4 + c),

2 cosh(0) = exp(0− 2K ′′2 + 4K ′4 + c),

2 cosh(0) = exp(−4K ′2 + 2K ′′2 +K ′4 + c).

These equations can be solved for the new coupling constants in terms of the
old ones. The final results are

K ′2 =
1

8
ln[cosh(4K2)], (7.1)

K ′′2 =
1

8
ln[cosh(4K2)],

K ′4 =
1

8
ln[cosh(4K2)]−

1

2
ln[cosh(2K2)],

c =
1

8
ln[cosh(4K2)] +

1

2
ln[cosh(2K2)] + ln(2).
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Hence, the new hamiltonian is defined as

exp(H̃ ′′) = exp
[∑

n

K ′2(sn1sn2 + sn2sn3 + sn3sn4 + sn4sn1)

+ K ′′2 (sn1sn3 + sn2sn4) +K ′4(sn1sn2sn3sn4) + c
]
.

Now, note that when n takes all the values, the n.n coupling between two
lattice points comes up two times and there are a total of N/2 spins left where
N is the total number of original spins. Thus H̃ ′′ becomes

H̃ ′′ = 2K ′2
∑

sisj +K ′′2

′∑
sisj +K ′4

′′∑
sisjsksl +

N

2
c ≡ H̃ ′ +

N

2
c. (7.2)

where the
∑

is over n.n points, the
∑′ is over n.n.n points and the

∑′′ is over
four spins. The definition of the new hamiltonian H̃ ′ can be modified as

exp
(
H̃ ′ +

N

2
c
)

=
∑

{sn=±1}
exp(H̃).

The probability distribution of the remaining spins is

P ′ = Z ′ exp(H̃ ′),

where Z ′, the partition function of the new system, is related to Z as

Z ′ exp(
N

2
c) = Z.

The definition of free energy per spin F , yields the relation

F ′[H̃ ′] = 2F [H̃] + cT.

Note that a different functional form F ′ has been used for the new system since
the new hamiltonian has additional coupling terms. These terms, the second
and third summations in Eq.(7.2), arise due to the elimination of degrees of
freedom. So one should start with a more general hamiltonian containing such
coupling terms ( and probably others) before the elimination process so that
a closed set of transformation equations are obtained.

As a first step, one may neglect the additional coupling terms and ap-
proximate the new hamiltonian with just the first term in Eq.(7.2). In this
approximation, F ′[H̃ ′] = F [H̃ ′] and the transformation is defined solely by
Eq.(7.1). This equation is similar to that in the 1-D case and one knows that
there is no non-trivial fixed point. A next step could be to neglect the four
spin coupling term but suitably approximate the n.n.n interaction term. The
energy contributions from the n.n and n.n.n couplings are of same sign and
hence they have a tendency to align the spins. For every spin, there are four
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n.n and n.n.n bonds. So to include the effect of n.n.n couplings in H̃ ′, in a
rather crude way, an effective n.n coupling constant is introduced as

2K ′2 +K ′′2 → K ′2.

This definition conserves the total energy contribution from these types of
couplings. Then, Eq.(7.1) can be modified as

K ′2 =
3

8
ln[cosh(4K2)]. (7.3)

The new hamiltonian is again a n.n Ising model with K ′2 as the coupling
constant. Eq.(7.3) has fixed points K∗2 = 0, K∗2 = ∞ and K∗2 = 0.507.
Linearising it around the non-trivial fixed point, one gets

4K ′2 =
3

2
tanh(4K∗2)4K2

= qy14K2 = (
√

2)y14K2,

where q =
√

2 is the scale factor. Therefore y1 ≈ 1.07 and hence the correlation
length exponent ν = y−1

1 ≈ 0.935 which may be compared with the exact value
1 ( from Onsager’s solution) and the Landau’s result 0.5. Thus, even a crude
method of implementing the RG procedure can provide a good estimate of the
correlation length exponent.

7.2 Spin Decimation - Majority Rule

This method, due to Niemeyer and van Leeuwen, is discussed for the case
of Ising model on a triangular lattice. The critical exponents are the same
irrespective of the lattice type. As seen in Figure 7.2, the lattice is divided
into triangular cells such that each spin is associated with a cell. Let si be the
ith spin (site spin) of the original lattice, s′i be the spin (cell spin) associated
with the ith cell and s1

i , s
2
i and s3

i be the three site spins belonging to the ith

cell. In the present method, the cell spin s′i is defined by the ‘majority rule’

s′i = sign (s1
i + s2

i + s3
i ).

Depending on the values of site spins sαi (α = 1, 2, 3), s′i can take values ±1.
Since the R.G. transformation introduces new types of couplings, one starts
with a general hamiltonian

H̃({si}) = −h
∑
i

si +K
∑
<i j>

sisj + L
∑

<<i j>>

sisj

+ M
∑

<<<i j>>>

sisj + (Four Spin Coupling) + etc.,
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Figure 7.2: Partitioning of Triangular Lattice.

where K, L and M are the n.n, n.n.n and n.n.n.n coupling constants. For
a given value of cell spin s′i, there are 4 site spin configurations. They are
denoted by ci (1 ≤ i ≤ 4)

ci = 1 : s1
i = s′i, s2

i = s′i, s3
i = s′i,

ci = 2 : s1
i = −s′i, s2

i = s′i, s3
i = s′i,

ci = 3 : s1
i = s′i, s2

i = −s′i, s3
i = s′i,

ci = 4 : s1
i = s′i, s2

i = s′i, s3
i = −s′i.

Then H̃({si}) can be expressed as a functional of {s′i} and {ci}. That is

H̃({si}) ≡ H̃({s′i}, {ci}).

The hamiltonian of the cell system is then defined as

exp
[
H̃ ′({s′i}) +N ′A

]
=
∑
{ci}

exp
[
H̃({s′i}, {ci})

]
.

where N ′ is the number of cell spins and N ′A is the contribution to the free
energy from the reduction of degrees of freedom. Once H̃ ′ is obtained, the cou-
pling coefficients {K ′, L′,M ′, · · ·} can be determined in terms of {K,L,M, · · ·}
and the R.G. transformation equations can be obtained. If the n.n distance is
unity, the n.n distance of the cell lattice is

√
3. So the spatial rescaling factor

q =
√

3. There is no renormalization of the cell spins since they remain ±1 as
in the site lattice. The eigenvalues of the linear transformation are to be then
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expressed as ρi = qyi = (
√

3)yi . If there are only two eigenvalues ρ1 > 1 and
ρh > 1, R.G. ideas developed earlier can be applied and the exponents can be
computed using the relations

ν =
1

y1

, yh =
1

2
(d− η + 1).

For a 2-D lattice, the exact values are ν = 1 and η = 1/4 and hence y1 = 1
and yh = 15/8.

The hamiltonian H̃ is split as H̃0 and V such that H̃0 contains all the
coupling terms between spins inside the cells. Then the new hamiltonian can
be expressed as

exp[H̃ ′(s′) +N ′A] =
∑
{ci}

exp[H̃0(s
′, c)] < exp[V (s′, c)] > .

The average of any quantity A is defined as

< A >=

∑
{ci}A exp[H̃0(s

′, c)]∑
{ci} exp[H̃0(s′, c)]

.

The cumulant expansion of < exp(V ) > is

< exp(V ) >= exp
[
< V > +

1

2
(< V 2 > − < V >2) + · · ·

]
.

Therefore one gets

exp[H̃ ′(s′) +N ′A]

=
∑
{ci}

exp[H̃0(s
′, c)] exp

[
< V > +

1

2
(< V 2 > − < V >2) + · · ·

]
.

Now, H̃0 which represents the coupling between spins in the cells can be
written as

H̃0(s
′, c) =

∑
i

H̃0i(s
′, c),

where H̃0i is the coupling between spins in the ith cell. In each cell, there are
only n.n couplings and then

H̃0i(s
′, c) = K(s1

i s
2
i + s2

i s
3
i + s3

i s
1
i ).

Noting that

s1
i s

2
i + s2

i s
3
i + s3

i s
1
i =

{
3 for ci = 1
−1 for ci = 2, 3, 4

one finds
H̃0i(s

′, c) = K(−1 + 4δci 1),
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and
H̃0(s

′, c) = K
∑
i

(−1 + 4δci 1).

Thus H̃0 has been expressed in terms of {ci}. It is independent of {s′i} and
this fact simplifies further calculations. Now, note that∑

{ci}
exp[H̃0(s

′, c)] =
∑
{ci}

exp
[
K
∑
i

(−1 + 4δci 1)
]

=
∏
i

4∑
ci=1

exp[K(−1 + 4δci 1)]

=
∏
i

Z0 = ZN
0 ,

where Z0 is given by

Z0 = exp(3K) + exp(−K)

+ exp(−K) + exp(−K)

= exp(3K) + 3 exp(−K).

7.2.1 First Order Approximation

At this order, it is enough to calculate < V >. Thus < exp(V ) > is approx-
imated as exp(< V >). First of all, let there be only n.n coupling. This will
illustrate how K is modified to K ′ by the R.G transformation in the first order
approximation. On retaining only the n.n interaction in H̃, couplings between
n.n cells alone contribute to V . The coupling energy between two n.n cells i
and j (see Figure 7.3) is then given by

Vij = K(s1
js

2
i + s1

js
3
i ).

The average of Vij can be calculated as

< Vij >=

∑4
ci=1

∑4
cj=1 exp[H̃0i + H̃0j]Vij∑4

ci=1

∑4
cj=1 exp[H̃0i + H̃0j]

.

The denominator is just Z2
0 . The numerator is

Nr. = K
4∑

ci=1

4∑
cj=1

exp
[
K(−1 + 4δci 1) +K(−1 + 4δcj 1)

]
(s1
js

2
i + s1

js
3
i )

= 2K
4∑

cj=1

exp[K(−1 + 4δcj 1)]s
1
j

4∑
ci=1

exp[K(−1 + 4δci 1)]s
2
i

= 2K[exp(3K)s′j + exp(−K)s′j][exp(3K)s′i + exp(−K)s′i]

= 2K[exp(3K) + exp(−K)]2s′is
′
j.
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Figure 7.3: Cells i and j.

Hence < Vij > reduces to

< Vij > =
2K

Z2
0

[exp(3K) + exp(−K)]2s′is
′
j = 2Kw2

1s
′
is
′
j,

w1 =
exp(3K) + exp(−K)

exp(3K) + 3 exp(−K)
.

Now, considering all the n.n cells, one gets∑
<ij>

< Vij >= 2Kw2
1

∑
<ij>

s′is
′
j.

Thus, the first order approximation yields

exp[H̃ ′(s′) +N ′A] = ZN
0 exp

(
2Kw2

1

∑
<ij>

s′is
′
j

)
.

The new hamiltonian and the free energy term A are given by

H̃ ′(s′) = 2Kw2
1

∑
<ij>

s′is
′
j ≡ K ′

∑
<ij>

s′is
′
j,

A =
N

N ′
ln(Z0).

It is important to note that H̃ ′ contains only the n.n interactions. In higher
order approximations, more general coupling terms will appear. The R.G
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transformation equation in first order approximation is

K ′ = 2Kw2
1 = 2K

[ exp(3K) + exp(−K)

exp(3K) + 3 exp(−K)

]2
≡ f(K).

As seen earlier, K∗ = 0 and K∗ =∞ are the trivial fixed points. But the tran-
scendental equation K∗ = f(K∗) has a non-trivial fixed point K∗ ≈ 0.3356.
Linearising around this fixed point, one gets

∆K ′ = (
∂f

∂K
)K∗∆K ≈ 1.634∆K.

Thus the R.G matrix is 1 × 1 and hence the eigenvalue is ρ1 ≈ 1.634. So
y1 ≈ 0.8939 and ν = y−1

1 ≈ 1.1187 which may be compared with the exact
value 1.

7.2.2 Second Order Approximation

To improve the results of last section, it is necessary to calculate the second
term in the cumulant expansion of < exp(V ) >. With the n.n interaction
between site spins, the term to be evaluated is

< V 2 > − < V >2=
∑
<ij>

∑
<kl>

< VijVkl > − < Vij >< Vkl > . (7.4)

where < ij > etc. denote n.n cells. If there is no common cell in the pairs
< ij > and< kl >, then the r.h.s is zero. For< ij >=< kl >, r.h.s contributes
terms like < V 2

ij > − < Vij >
2. The expression for < Vij > obtained in the

previous section shows that < Vij >
2 is independent of s′i and s′j. Following

the same steps, one can show that < V 2
ij > also is independent of s′i and s′j.

Hence such terms contribute only to the free energy term A. So one has to
consider only the cases when there is one common cell in the pairs < ij >
and < kl >. There are four ways to have a common cell j between the pairs
< ij > and < jk > and they are shown in Figure 7.4 with numbers 1 to 4
in the respective cells. In Case-1, every pair forms n.n cells. In Case-2 and
Case-3, < ij > and < jk > are n.n pairs but < ik > is a n.n.n pair. With
n.n interactions, the 3rd spin of jth cell is uncoupled to cells i and k in Case-2.
But in Case-3, all the spins of jth cell are connected to other cells. Finally in
Case-4, < ij > and < jk > are n.n pairs while < ik > is a n.n.n.n. pair. The
contributions to the r.h.s of Eq.(7.4) from the four cases are to be computed.

Case-1 (n.n)
Note that

< VijVjk > = K2 < (s1
i s

2
j + s1

i s
3
j)(s

2
js

1
k + s2

js
3
k) >

= K2 < s1
i s

1
k + s1

i s
3
k + s1

i s
3
js

2
js

1
k + s1

i s
3
js

2
js

3
k > .
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Figure 7.4: Cells for Second Order Calculation.

where the result [s2
j ]

2 = 1 has been used. The averages can be easily obtained
by following the steps in the calculation of < Vij >. Thus

< s1
i s

1
k > = < s1

i >< s1
k > = w2

1s
′
is
′
k,

< s1
i s

3
js

2
js

1
k > = < s1

i s
1
k >< s3

js
2
j > = w2

1s
′
is
′
kw2,

w1 =
1

Z0

[
exp(3K) + exp(−K)

]
w2 =

1

Z0

[
exp(3K)− exp(−K)

]
.

These results lead to

< VijVjk >= K2(2w2
1 + 2w2

1w2)s
′
is
′
k.

The expression already obtained for < Vij > yields

< Vij >< Vjk >= K2(2w2
1s
′
is
′
j)(2w

2
1s
′
js
′
k) = 4K2w4

1s
′
is
′
k.

Thus one gets

1

2
< VijVjk > − < Vij >< Vjk >= K2w2

1(a+ b)s′is
′
k, (7.5)

where a and b are defined as

a = 1− w2
1

b = w2 − w2
1.
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The calculations for the remaining cases follow exactly the same steps and the
final results, which can be easily verified, are quoted below.

Case-2 (n.n.n)

1

2
< VijVjk > − < Vij >< Vjk >= 2K2w2

1bs
′
is
′
k. (7.6)

Case-3 (n.n.n)

1

2
< VijVjk > − < Vij >< Vjk >= K2w2

1

1

2
(a+ 3b)s′is

′
k. (7.7)

Case-4 (n.n.n.n)

1

2
< VijVjk > − < Vij >< Vjk >= 2K2w2

1bs
′
is
′
k. (7.8)

Note that the coupling between i and k cells in Case-1 can be obtained in
4 ways of labelling the cells. First of all, as shown in Figure 7.4, then by the
interchange of i and k and then in another two ways by putting the jth cell
to the left of i and k. The coupling between i and k in Case-2, Case-3 and
Case-4 can be obtained in two ways, first as shown and then by interchanging
i and k. Accounting for these extra factors 4 and 2, Eq.(7.5) to Eq.(7.8) can
be combined as

1

2

∑
<ij>

∑
<jk>

< VijVjk > − < Vij >< Vjk >

= K ′′
∑
<ik>

s′is
′
k + L′′

∑
<<ik>>

s′is
′
k +M ′′ ∑

<<<ik>>>

s′is
′
k, (7.9)

where

K ′′ = 4K2w2
1(a+ b),

L′′ = K2w2
1(a+ 7b),

M ′′ = 4K2w2
1b.

Thus it has been shown that n.n.n and n.n.n.n interactions are generated
by the partial summation procedure. Therefore, to obtain the transformation
laws, the initial site hamiltonian also should have such interactions. It is easy
to incorporate these terms and find their contributions to first order accuracy.
Referring to Case-1 of Figure 7.4, the contributions from n.n.n and n.n.n.n
interactions to Vij can be written as

V
(1)
ij = L(s1

i s
1
j + s2

i s
2
j + s3

i s
3
j) +M(s1

i s
3
j + s3

i s
1
j),
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The average of V
(1)
ij can be easily calculated as

< V
(1)
ij >= (3L+ 2M)w2

1s
′
is
′
j,

which provides a n.n contribution∑
<ij>

< V
(1)
ij >= (3L+ 2M)w2

1

∑
<ij>

s′is
′
j.

When there is n.n.n.n couplings at the site level, configurations in Case-2 and
Case-3 introduce n.n.n coupling between cells i and k. The coupling energy
at site level is

V
(2)
ik =

{
M s2

i s
1
k for Case− 2

M s1
i s

3
k for Case− 3

The average of V
(2)
ij contributes the n.n.n term∑

<<ij>>

< V
(2)
ij >= Mw2

1

∑
<<ij>>

s′is
′
j.

Adding up the above terms to Eq.(7.9) and including the first order term
< V >, the second order approximation to H̃ ′ is found to be

H̃ ′({s′i}) = K ′
∑
<ik>

s′is
′
k + L′

∑
<<ik>>

s′is
′
k +M ′ ∑

<<<ik>>>

s′is
′
k, (7.10)

where

K ′ = 2w2
1K +K ′′ + (3L+M)w2

1

= w2
1

[
2K + 4(a+ b)K2 + 3L+ 2M

]
L′ = L′′ + w2

1M = w2
1

[
(a+ 7b)K2 +M

]
M ′ = M ′′ = w2

14bK2.

In summary, the n.n, n.n.n and n.n.n.n interactions of site spins have been
taken into account to obtain the first order approximation. However, only
the n.n interaction is considered in the second order approximation. One may
assume that K is much larger than L and M , that is, K ∼ O(1) and L ∼M ∼
O(2). So the contribution of L and M in the second order approximation is
of O(4) and hence can be neglected.

The fixed point values of the transformation equations can be worked out
and the results are K∗ ≈ 0.2789, L∗ ≈ −0.0143 and M∗ ≈ −0.0152. These
values indicate that the fixed point hamiltonian has ferromagnetic n.n cou-
pling, however, the n.n.n and n.n.n.n couplings are anti-ferromagnetic in na-
ture. The linearised transformation matrix R̃ is found to be

R̃ ≈

 1.8966 1.3446 0.8964
−0.0403 0.0 0.4482
0.0782 0.0 0.0


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Figure 7.5: Division of Square Lattice in to Cells.

with eigenvalues

ρ1 ≈ 1.7835

ρ2 ≈ 0.2286

ρ3 ≈ −0.1156.

Thus there is only one eigenvalue ρ1 > 1 and hence the assumptions in the R.G
theory are valid. Now, ρ1 ≈ 1.7835 = (

√
3)y1 yields ν = 1/y1 ≈ 0.9494. This

value is better than that obtained in the first order approximation, however,
the convergence to the exact value is slow.

7.2.3 Square Lattice

The procedure outlined above can also be applied for the case of a square
lattice. To use the majority rule to define the cell spin, it is necessary that
each cell contains an odd number of site spins. Thus there has to be a minimum
of nine spins per cell (see Figure 7.5). The cell lattice is also square but with
a spacing three times that of the site lattice. The majority rule definition of
cell spin is

s′i = sign (s1
i + s2

i + · · ·+ s9
i ),

and s′i takes values ±1.
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7.3 Formulation using Weight Functions

The schemes discussed above can be formulated in a general way using a
weight function P ({s′i}, {sαi }) which depends on N ′ cell spins {s′i} and N site
spins {sαi }. For the triangular lattice, P is defined as

P (s′, s) ≡
∏
i

p(s′i, {sαi }),

where p(s′i, {sαi }) has the form

p(s′i, {sαi }) =
∏
i

1

2

[
1 +

1

2
s′i{(s1

i + s2
i + s3

i )− s1
i s

2
i s

3
i }
]
. (7.11)

Note that the factor p(s′i, {sαi }) becomes unity when

s′i = sign (s1
i + s2

i + s3
i ),

and 0 otherwise. The renormalized hamiltonian H̃ ′({s′i}) is defined as

exp[H̃ ′({s′i})] =
∑

{sαi =±1}
P (s′, s) exp[H̃(s)],

where the sum is over the configurations of site spins. The sum contributes
only when the majority rule is satisfied and so the cell spins {s′i} take values
±1 just like the site spins. A particular configuration of site spins corresponds
to a specific value of energy, H̃(s). Corresponding to that configuration, there
is a configuration of cell spins determined by the weight function P (s′, s).
Then, summing over all the configurations of site spins yields the cell energy
function H̃ ′(s′). This formulation of reducing the degrees of freedom is very
general, however, some minor restrictions are required on P . First of all, one
must have

P (s′, s) ≥ 0,

for any configuration of {sαi } and {s′i} since it assigns weights to configurations
of site spins. Secondly, the partition function ZN ′ of the cell model,

ZN ′ =
∑
{s′i}

exp(H̃ ′)

=
∑
{s′i}

∑
{sαi }

P (s′, s) exp(H̃),

should be the same as that of the site model. So, there is a restriction,∑
{s′i}

P (s′, s) = 1
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for every configuration of the site spins. The weight function of Eq.(7.11) can
be generalized as

p(s′i, {sαi }) =
∏
i

1

2

[
1 + s′if(s1

i , s
2
i , · · · sni )

]
,

where sαi , 1 ≤ α ≤ n are the spins in the ith cell and f is some suitable
function.

The method of decimation introduced earlier (section 7.1) for the square
lattice can also be interpreted in terms of a weight function. There, spins on
alternate diagonals were decimated to obtain another square lattice with a
spacing

√
2 times larger. If the spins not to be decimated are indicated as s′i

and those to be decimated as si, then the definition of the new hamiltonian
H̃ ′({s′i}) is

exp[H̃ ′({s′i})] =
∑
{si}

exp[H̃({s′i}, {si})].

Using the identity∑
sj

1

2
(1 + s′isj)f(sj) =

{
f(1) if s′i = 1
f(−1) if s′i = −1 ≡ f(s′i).

for any function f(si), one can write

exp[H̃({s′i}, {si})] =
∑
{sj}

[∏
j

1

2
(1 + s′isj)

]
exp[H̃({sj}, {si})].

Then, summation over the configurations of si yields

exp[H̃ ′({s′i}] =
∑
{si}

∑
{sj}

[∏
j

1

2
(1 + s′isj)

]
exp[H̃({sj}, {si})].

This is then identical to the general definition with the weight function

P (s′, s) =
∏
j

1

2
(1 + s′isj).

The formulation of reduction of degrees of freedom in terms of weight func-
tion has the flexibility that any appropriate form for the same can be employed.
Kadanoff’s proposal of a weight function for the d-dimensional cubic lattice is
discussed in the following section.

7.4 Kadanoff’s Bond Moving Technique

Kadanoff’s method to derive approximate RG transformation equations is
based on the idea that the hamiltonian of the model, H̃(s), can be replaced
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by H̃(s) + V (s) where V (s) is to be chosen appropriately. The renormalized
hamiltonian H̃ ′(s) is defined as

exp[H̃ ′(s′)] =
∑
s

P (s′, s) exp[H̃(s) + V (s)].

Since the original hamiltonian has been modified, the free energy calculated
with H̃ ′(s) will not be the same as that with H̃(s). However, by choosing
V (s) appropriately, the free energy corresponding to H̃ ′(s) can be made a
lower bound to the original free energy. Using the inequality, exp(x) ≥ 1 + x,
and summing over the cell spin configurations, one gets∑

s′
exp[H̃ ′(s′)] ≥

∑
s

exp[H̃(s)][1 + V (s)],

where the normalization condition on the weight function P (s′, s) has been
used. This relation implies that

Z(H̃ ′) ≥ Z(H̃)[1+ < V (s) >],

where Z(H̃ ′) and Z(H̃) are respectively the partition functions of the reduced
and original model and < V (s) > is the statistical average of V (s) with the
Boltzmann weight exp[H̃(s)]. Then, the condition

< V (s) >= 0,

yields the inequality
Ft(H̃

′) ≤ Ft(H̃),

since the free energy Ft = −T ln(Z). Thus the free energy of the system result-
ing out of the transformation is a lower bound to the exact free energy. This
observation leads to the possibility of introducing some variational parameters
in P (s′, s) so that Ft(H̃

′) can be maximized w.r.t those parameters and a good
approximation to the exact free energy can be obtained. As an example of
choosing V (s) for the 2−D Ising model hamiltonian H̃(s), consider

V (s) = K(s3s4 − s1s2).

Then it is clear that H̃(s) + V (s) represents a system in which the coupling
term between the spins s1 and s2 is absent but that between s3 and s4 has
double its original value. This particular choice has the required property,
< V (s) >= 0, due to the translation symmetry of the (infinite) lattice. This
method of constructing the interaction potential V (s) by spatially shifting
the coupling energies between spins is called the bond moving technique. The
method, thus, shifts the ‘troublesome’ coupling terms in H̃(s) so that the RG
transformation with H̃(s) + V (s) can be easily effected.
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Table 7.1: Critical Exponents - Bond Moving Technique

d ν νexact δ δexact

2 0.999 1.000 15.04 15.00
3 0.619 0.630 4.604 4.82
4 0.491 0.500 2.9 3.00

In Kadanoff’s calculations for the d-dimensional Ising model, the lattice
is divided into cells of length twice the original lattice spacing. If the spins
belonging to the ith cell are denoted by sαi , 1 ≤ α ≤ 2d, the weight function
is defined as

P (s′, s) =
∏
i

p(s′i, {sαi }), 1 ≤ α ≤ 2d,

p(s′i, {sαi }) =
1

2

exp[λs′i(s
1
i + · · ·+ s2d

i )]

cosh[λ(s1
i + · · ·+ s2d

i )]
,

where λ is a parameter to be adjusted. By adding a suitable term V (s)
representing moving of bonds, Kadanoff derived approximate transformation
equations for the coupling constants. These equations and hence their fixed
points depend on the parameter λ. The prescription used to fix the value
of λ is that the free energy corresponding to the fixed point hamiltonian is
a maximum. This method provides excellent values of critical exponents as
seen in Table 7.1.

7.5 Migdal - Kadanoff Method

The Migdal-Kadanoff method is another approximate technique to carry out
the reduction of degrees of freedom. Here the spin decimation method together
with the bond moving idea is used to develop the transformation equations
for multidimensional lattices. In effect, it leads to a generalization of the
transformation equations of the 1−D lattice. The derivation discussed below
is due to Kadanoff who has developed a reinterpretation of Migdal’s results
using bond moving technique. In Chapter 4, the transformation equations for
the 1−D lattice were derived by decimating every alternate spins. Thus, with
a scale factor q = 2, the equations obtained were

exp(4K ′) =
cosh(2K + h) cosh(2K − h)

cosh2(h)
,
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Figure 7.6: Bond-Moving and Decimation.

exp(2h′) =
cosh(2K + h)

cosh(2K − h)
exp(2h).

The coupling energy represented by each bond in the 1−D lattice is propor-
tional to K. The magnetic field coupling energy per site, which is propor-
tional to h, can also be associated with each bond of the lattice. After the
decimation, the resulting lattice will have coupling and magnetic field ener-
gies proportional to K ′ and h′ respectively. The fixed point value of h is 0 as
seen from the second equation. Since one is interested in the transformation
equations near the fixed point, they can be simplified by assuming that h is
small. A Taylor expansion around h = 0 yields

K ′ =
1

2
ln[cosh(2K)] +O(h2),

h′ = h[1 + tanh(2K)] +O(h3).

For generalizing these results to the 2−D lattice, the bond moving technique
is used. The spins to be decimated in the original 2 − D lattice (Figure 7.6
a) are marked with filled circles. The resulting lattice (Figure 7.6 c) will then
have twice the original spacing. Before performing the decimation, an ap-
proximate lattice (Figure 7.6 b) is generated by moving certain bonds. All
the four bonds within the big square have been moved to the left and bottom.
The spins to be decimated are again denoted by filled circles. It is clear that
the hamiltonian of the modified lattice can be expressed as H̃(s) + V (s) with
the property < V (s) >= 0 and hence the free energy of the decimated lattice
is a lower bound to the exact free energy. Since the spins to be decimated
in the modified lattice are coupled only along one direction, the RG trans-
formation can be done exactly as in the 1 − D case. Each of the bonds in
the approximate lattice has twice the original coupling energy. Therefore, to
obtain the coupling constant K ′ of the decimated lattice, one should replace
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K by 2K in the transformation equations for d = 1. Similarly, due to moving
of bonds, each bond in the modified lattice carries a field energy proportional
to 2h. Therefore, the magnetic field h′ of the decimated lattice is obtained by
replacing h by 2h in the 1−D equation. Thus for the 2−D lattice, K ′ and
h′ are given by

K ′ =
1

2
ln[cosh(4K)] +O(h2),

h′ = 2h[1 + tanh(4K)] +O(h3).

The fixed point value of h is h∗ = 0. The equation for K ′ has a non-trivial
fixed point K∗ ≈ 0.305. Note that there were only the trivial fixed points
K∗ = 0 and K∗ =∞ in the 1−D case. Linearising the equations around K∗

and h∗ one gets

∆K ′ = 2 tanh(4K∗)∆K,

∆h′ = 2[1 + tanh(4K∗)]∆h.

These are already in the diagonal form and hence the eigenvalues of the RG
matrix are

ρ1 = 2 tanh(4K∗) = 2y1 ,

ρh = 2[1 + tanh(4K∗)] = 2yh ,

which yield y1 ≈ 0.748 and yh ≈ 1.879. These results are to be compared to
the exact values 1 and 15/8 respectively. The correlation function exponent
ν = y−1

1 ≈ 1.34 is somewhat inaccurate. The critical coupling constant K∗ ≈
0.305 (which is related to the critical temperature Tc) compares better with
the exact value of 0.44069 obtained from the Onsager solution.

The transformation equations can be easily generalized to the case of a
d-dimensional lattice. For that, imagine a big ‘cube’ of side length twice the
original lattice spacing. All the spins except those at the corners of this cube
are to be decimated to produce a lattice of double the original spacing. There
are a total of 2d small cubes within the big cube. With each of these small
cubes, one can associate d bonds (i.e. those along the d axes). Thus d 2d

bonds are associated with the big cube. Out of these, d 2d − 2d bonds have
to be moved towards the 2d bonds along the d axes of the big cube. The 2d
bonds are those which are to be decimated in the 1 − D procedure. So the
bond strength of the modified lattice is 1 + (d 2d − 2d)/2d = 2d−1. There is
a field energy proportional to h with each of the bonds in the original lattice.
So the modified lattice field energy is higher by a factor 2d−1. Therefore K ′

and h′ of the decimated lattice are obtained by replacing K and h in the 1−D
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Table 7.2: Exponents - Migdal - Kadanoff Method

d K∗ ν δ

2 0.305 1.34 15.5
3 0.0653 1.06 5.90
4 0.0158 1.01 4.87

equations by 2d−1K and 2d−1h respectively. That is

K ′ =
1

2
ln[cosh(2dK)] +O(h2),

h′ = 2dh[1 + tanh(2dK)] +O(h3).

As found earlier, h∗ = 0. The values of K∗ and the exponents ν and δ shown in
Table 7.2 are easily computed. The values of the correlation length exponent
ν are very inaccurate. When the bonds are shifted to effect the reduction of
degrees of freedom, the spatial correlations are not accounted properly and
hence the values of ν turn out to be quite wrong. However, the dependence
of the exponent δ on d comes out somewhat reasonably in spite of the crude
approximations involved.

7.6 Monte Carlo Renormalization

The Monte Carlo method in statistical physics is a powerful tool for calculating
the thermodynamic properties of systems away from critical points. Most of
the applications of the method have been for discrete models and so the Ising
model is considered for illustrating the ideas. Usually one starts with a cubic
lattice of linear size L and assumes periodic boundary conditions for the spin
orientations at the surfaces. An initial spin configuration c0, which is rather
arbitrary, is first selected by assuming that all spins take value 1. A sequence
of configurations {cn} is then generated by successively flipping the spins one
by one. A Monte Carlo step (MCP) is said to be over when the spins at every
site have been flipped once. The process is then repeated by completing the
2nd, 3rd, etc. MCS. When the system is in equilibrium at temperature T , the
probability of occurrence of the nth configuration is

Pn = Z−1 exp(−En/kBT ),

where En is the energy associated with that configuration. En is readily
obtained if the coupling constants K and h are given specific values. The sta-
tistical average of any quantity which depends on the spin variables can then
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be calculated by weighting its contribution from configuration cn with Pn. It
is a usual practice to consider the configurations at the end of every MCS for
calculating the averages so that they are somewhat independent. However,
since the main aim is to evaluate the equilibrium properties, it is necessary
that the configurations chosen are in the neighbourhood of the most probable
one. A direct method of choosing the sequence {cn} such that one approaches
the most probable one is to accept only those cns for which En < En−1. Such
a procedure has two drawbacks, (i) a large number of configurations generated
will get rejected, and (ii) there is the possibility of the process getting trapped
in a local energy minimum. So in the commonly used method, due to Metropo-
lis, the configuration cn is not rejected always even if En > En−1. The basic
idea of the method becomes clear if one associates a discrete Markov process
with the process of generating configurations. Then cn represents a state of the
process and Pn is the probability of realizing the nth state. The specification
of the Markov process becomes complete if the probability of transition from
state n to m, W (n→ m), is also defined. The the process of generating {cn},
which is analogous to the time development of a system, should eventually
lead to equilibrium configurations. For guaranteeing this requirement, it is
sufficient that W (n→ m) satisfy the detailed balance condition

PnW (n→ m) = PmW (m→ n),

which means that the probability of realizing the states m and n in succession
is equal to that for the reverse event. Such a condition ensures that the
probability of occurrence of state n is Pn when the initial transients have died
out. Now, if Em ≤ En, then cn should be definitely accepted and soW (n→ m)
must be unity. Therefore, W (m → n) reduces to exp(−∆E/KBT ) where
∆E = En−Em > 0. In the Metropolis method, the configuration cn resulting
from cm with En > Em is accepted with probability p = exp(−∆E/kBT ). The
probability that a random number r, uniformly distributed in [0,1], has value
less than p is p itself. So, in the process of generating configurations, if En turns
out to be greater than En−1, a random number r is computed, and if r < p, cn
is accepted, otherwise it is rejected. Approach to equilibrium can be monitored
by examining the stabilization of average values. The results obtained with
this approach have to be repeated for different values of the system size L
and finally extrapolated to the infinite system limit. The inherent statistical
errors in the results are well characterized and so very reliable results can
be obtained though computer resources usually set the limits of achievable
accuracy.

When the system is close to the critical point, the method runs into prob-
lems because of two reasons. First of all, the inherent critical slowing down
makes the process of approaching equilibrium very difficult. Secondly, the cor-
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relation length becomes larger than the size of the simulated system and thus
the singularities of thermodynamic quantities at the critical point get rounded
off. A way to circumvent this problem is to use the finite size scaling forms
for the thermodynamic quantities and extract the critical exponents and other
universal features. However, a combination of the Monte Carlo method and
real space renormalization group techniques has provided excellent results in
the critical region. The simplest idea is to simulate a system of size L×L×2L
(in 3 dimension), and consider it as just two cells of size L× L× L each. So
the cell size parameter q is L. For every site spin configuration, the cell spins
s′1 and s′2 can be readily obtained by the majority rule. Now, assuming an
Ising hamiltonian for the cell system, the new coupling constants K ′ and h′

are extracted from the values of the averages < s′1s
′
2 > and < s′1 >. Then

by changing K and h, the RG fixed point and the matrix elements ∂K ′/∂K,
∂K ′/∂h, etc. can be numerically computed, and the eigenvalues and the expo-
nents y1 and yh determined. The calculations are then repeated for different
values of L and extrapolated to the infinite lattice limit.

It is also possible to incorporate other types of couplings (say, the n.n.n
coupling) between the spins. A useful procedure has been to adopt the ideas
of real space renormalization group techniques more directly. Thus, one starts
with a finite lattice of size L×L×L, generates a sufficient number of equilib-
rium configurations and stores them in the computer memory. This forms the
first set of configurations {c0}. Corresponding to every one of these site spin
configuration, a cell spin configuration is obtained by majority rule. Thus a set
{c′n} is generated. Here, a cell may contain only 23 = 8 site spins correspond-
ing to a cell size q = 2. At this stage, the size of the system is L/2×L/2×L/2.
Let the hamiltonian of the original system be expressed as

H

T
=
∑
α

Kαsα,

where sα represents the contribution from the interactions of type α which
can be n.n, n.n.n, four spin coupling, magnetic field coupling, etc. and Kα is
the corresponding coupling constant. The hamiltonian characterizing the set
of configurations {c′n} is then given by

H ′

T
=
∑
α

K ′αs
′
α.

The averages < sα > and < s′α > can be readily computed and so one can
write

∂

∂Kβ

< s′γ >=
∑
α

∂

∂K ′α
< s′γ >

∂K ′α
∂Kβ

.

Now, {∂K ′α/∂Kβ} is the RG matrix. The derivatives of the averages can
be expressed in terms of their correlations which are calculated easily. The
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equivalence of the averages corresponding to H and H ′ implies that

< s′γ >=
∑
{c′n}

s′γZ
−1 exp(−H ′/T ) =

∑
{cn}

s′γZ
−1 exp(−H/T ),

where the partition function Z = Z({Kα}) = Z({K ′α}). Therefore one finds

∂

∂Kβ

< s′γ > = < s′γsβ > − < s′γ >< sβ >,

∂

∂K ′α
< s′γ > = < s′γs

′
α > − < s′γ >< s′α > .

So the RG matrix can be numerically computed by solving a set of linear
equations. The whole procedure can now be repeated by performing a second
level of coarse graining to obtain {c′′n}. Practical calculations including as
large as ten types of coupling constants can be performed quite easily with
this approach. These methods have been applied successfully to problems in
percolation theory, polymer physics, etc. to be discussed in the next chapter.

7.7 Application to First Order Transitions

First order transitions are accompanied by a discontinuous change in the order
parameter across the transition point. The magnetic transition across the
temperature axis below Tc, the liquid-gas transition (i.e. boiling) across the
vapour pressure curve for T < Tc, solid to liquid transition (i.e. melting)
across the melting curve, etc. are common examples. In the last two cases, the
latent heat accompanying the transition indicates a discontinuous change in
the internal energy also. For the magnetic example, the order parameter in the
two ‘phases’ of the system coexisting at h = 0 are magnetization in opposite
directions. Both phases have only finite correlation lengths and so there are no
universal features like scaling of thermodynamic variables. Nevertheless, it is
of interest to see if the discontinuity in the order parameter can be associated
to an RG fixed point. Repeated coarse graining of the system on either side of
the temperature axis (or phase boundary) would remove all fluctuations in spin
orientations as the correlation length is finite. Eventually, the RG iterations
will produce a system with magnetization in a specific direction and further
iterations would leave the system unaltered. This asymptotic state would
also be independent of the short length scale details of the original system.
Thus it appears that repeated application of the RG transformation drives
the system to a fixed point µ∗∗ for T < Tc. This fixed point must be different
from µ∗ associated with the critical point. The unidirectional orientation
of the spins in the renormalized system represented by µ∗∗ is analogous to
that occurring at T = 0. In fact, the presence of such a fixed point is evident
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from the approximate transformation equations derived in the earlier sections.
For instance, the recursion relations of the Migdal-Kadanoff method shows
that K∗∗ = ∞ and h∗∗ = 0 is a fixed point. One can easily see that the
eigenvalue exponents y1 and yh corresponding to this fixed point are d−1 and
d respectively, where d is the spatial dimension. The value K∗∗ =∞ indicates
the strong coupling limit which corresponds to the state at T = 0. The
result yh = d is a general property of µ∗∗ if it is to represent a discontinuous
transition. To show this, consider the functional equation for free energy
density,

F (h, µ̄) = q−dF (h′, µ̄′) + A(q, µ̄),

where µ̄ denotes the parameter space corresponding to the even part of the
hamiltonian. Using the transformation law h′ = qyhh and the relation m =
−∂F/∂h, the discontinuity,

∆m(µ̄) = m(0+, µ̄)−m(0−, µ̄),

in the magnetization at h = 0can be expressed as

∆m(µ̄) = q−d+yh∆m(µ̄′).

The term A which must be analytic in h does not contribute to ∆m(µ̄).
Putting µ̄ = µ̄′ = µ̄∗∗, one finds that the field exponent yh = d provided
∆m(µ̄∗∗) 6= 0. Now, on repeatedly applying the transformation l times, ∆m(µ̄)
can be written as

∆m(µ̄) = ql(−d+yh)∆m(µ̄l) ≈ ql(−d+yh)∆m(µ̄∗∗) , l� 1,

since µ̄l approaches µ̄∗∗ for large l. Thus, if yh = d and ∆m(µ̄∗∗) 6= 0, then
∆m(µ̄) 6= 0. Therefore the fixed point µ∗∗, usually called the discontinuity
fixed point, to be associated with a first order transition must have the prop-
erty yh = d. The transformation equations obtained using the majority rule
for a 2−D triangular lattice also show this property. There it was shown that
the first order approximation to the n.n coupling constant is K ′ = 2Kw2

1(K)
where the function w1(K) tends to unity as K →∞. It is easy to add a mag-
netic field term to the hamiltonian and then derive the equation h′ = 3hw1(K)
for small h. These equations clearly show that K∗∗ = ∞ and h∗∗ = 0 is a
fixed point and the exponents are (using q =

√
3) y1 ≈ 1.262 and yh = 2 = d

respectively.
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Chapter 8

Problems with Many Length
Scales

The renormalization group theory of second order (thermal) phase transitions
was introduced and developed in the preceding chapters. Systems near the
critical point have spatial structures at all length scales and in the RG method,
the details of the structure are averaged out in a recursive manner. At each
step, the method generates a coarser description of the system in terms of
renormalized model parameters. Due to the presence of an infinite length
scale, the coarse graining procedure leaves the system unaltered at the critical
point. The universal aspects of critical behaviour are related to the variation
of the model parameters in the vicinity of the fixed point. All these ideas
have been discussed earlier with reference to the simple ferromagnetic critical
point. The critical behaviour observed in the condensation of a gas or in a
binary mixture can also be mapped into the Ising model of ferromagnetism.
Thus there is already a rich area of application of the RG idea, however, its
applicability is much wider. In this chapter, a few more problems where the
idea has turned out to be of great use are discussed. Just as in the magnetic
case, the emphasis is on the universal aspects observed in these phenomena.
More details of these applications can be obtained from the cited references.

8.1 Critical Dynamics

The dynamical aspects of critical phenomena form one of the important areas
where the RG ideas are very fruitful. In dynamics, one is concerned with
the time evolution of a system perturbed from a thermodynamic equilibrium
state. A slight change in the macroscopic conditions such as temperature or
the magnetic field can trigger the time evolution of the system. The detailed
time variation of all the system variables affects the relaxation of the system
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to a new equilibrium state. However, one can observe a typical macroscopic
time interval, called the relaxation time, in the evolution of the system. The
relaxation time depends on the magnitude of the perturbation and, in general,
is different at different spatial locations if the perturbation is non-uniform.
The dynamical evolution can be considered at various levels of details, for
instance, at the level of Ising spins, at a some what coarser level in terms of
the spin density in the Landau - Ginzburg model or even at a macroscopic level
employing the over all magnetization. However, the present discussion is in
terms of the L-G model spin density s(x) or its equivalent Fourier components
{sk}. Near the critical point, s(x) should change in large regions of size
of the correlation length and so dynamics is rather slow. This feature of
relaxation process near the critical point is termed as critical slowing down.
In fact at T = Tc, the relaxation time diverges and the characteristic exponent
describing the divergence is one of the important quantities obtained from
studies in critical dynamics. To formulate the time evolution of the Fourier
amplitudes sk, it is necessary to set up equations of motion for them. For
simplicity, consider the quadratic approximation to the one component (n=1)
L-G hamiltonian for T > Tc,

H({sk}) =
∑
k≤Λ

(a2 + ck2)|sk|2.

The hamiltonian can be taken as a potential energy function in the variables
{sk}. Then the negative gradient of H w.r.t sk is a thermodynamic force
driving its time evolution. That is

F ( thermodynamic ) = − ∂

∂s−k

H.

It should be noted that the Fourier variables sk and s−k are not independent,
in fact, they are just complex conjugates. The real and imaginary parts of
sk are independent and hence the force along the co-ordinate sk should be
obtained by calculating the derivatives of H (which also can be expressed in
terms of the real and imaginary parts of sk) w.r.t these independent parts and
then suitably adding them up. The resulting expression can also be expressed
as the derivative of H w.r.t s−k as shown in the above equation.

The dynamical variables which have been averaged out in the coarse de-
scription employing s(x) also affect its time evolution. Further, the coupling
of the spin variables with other degrees of freedom ( which is one of the rea-
son necessitating a statistical treatment ) also influence the dynamics of s(x).
Both these contributions vary at a much faster time scale and so they appear
as random influences on the spin density. These forces may be separated into
a macroscopic frictional force and a purely random force with zero mean value.
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These effects manifest in the Brownian motion of suspended particles in a fluid
medium. Following the theory of Brownian motion, the friction force, which
introduces energy dissipation and irreversibility, can be represented as

F ( friction ) = −Γ′k
d

dt
sk,

where Γ′k is a phenomenological friction constant. The random part of the
influence of the fast varying degrees of freedom is denoted as

F ( random ) = ζ(t).

The function ζ(t) is the sum of the influences of a very large number of vari-
ables and using the central limit theorem of statistics, its distribution can be
assumed to be Gaussian. Another reasonable assumption regarding ζ(t) is
that it is uncorrelated at different times. Since it represents the fast varying
influences, its values at different times (in the time scale of sk) are assumed
to be independent. Thus the correlation function < ζ(t)ζ(t′) > is

< ζ(t)ζ(t′) >= 2kBTδ(t− t′),

where the amplitude factor is chosen to be 2kBT so that the equilibrium
probability distribution of sk is proportional to the Boltzmann factor.

In studying the relaxation of the Fourier amplitudes sk near Tc , one is
interested only in their slow time variation. On such a time scale, their second
order time variations may be neglected. The time variation of sk is then
obtained by balancing the different force terms. The resulting equation of
motion is similar to that of a macro-particle moving with the terminal velocity
in a viscous medium. Thus, the equation of motion for sk is

d

dt
sk = −Γk

∂

∂s−k

H + Γkζ(t).

where Γk = Γ′k
−1. The variables sk evolve as random functions of time.

So their dynamics should be described using the theory of random processes.
That is, these variables should be characterized in terms of distribution func-
tions. The probability distribution P ({sk}, t) satisfies the Fokker-Planck equa-
tion

∂P

∂t
=
∑
k≤Λ

Γk
∂

∂sk

[ ∂

∂s−k

HP
]

+ kBT
∑
k≤Λ

Γk
∂

∂sk

∂

∂s−k

P.

In equilibrium, P is independent of time. It can be easily verified that the
equilibrium solution is

P ({sk}) =
1

Z
exp(− H

kBT
).



196 Renormalization Group Theory

The stochastic model of dynamics outlined above provides the entire time
development of the Fourier amplitudes leading to the final equilibrium state.
However, the complete solution of the dynamical problem is much more in-
volved than calculating the partition function in the equilibrium situation. In
view of the fact that < ζ(t) >= 0, the average value of sk satisfies the equation

d

dt
< sk >= −Γk <

∂H

∂s−k

> .

Using the L-G hamiltonian ( for T > Tc ), one finds

d

dt
< sk >= −2Γk(a2 + ck2) < sk >,

This equation of motion shows that the relaxation time characterizing the
time development of sk is

τk =
1

Γk

1

2(a2 + ck2)
.

The dependence of Γk on small values of k decides the relaxation time of the
long wavelength modes. Assuming Γk = Γ to be a constant, one gets

τk =
1

Γ
G(k),

where G(k) is the correlation function for T > Tc,

G(k) =
1

2(a2 + ck2)
=

ξ2

2c(1 + ξ2k2)
.

The last step follows from the definition of the correlation length ξ for T > Tc.
Employing the general scaling form for G(k),

G(k) = ξ2−ηg(ξk),

the relaxation time may be written as

τk =
1

Γ
ξ2−ηg(ξk).

Thus τ0 diverges as
τ0 ∼ |T − Tc|−ν(2−η),

if the system is in the vicinity of Tc during the time evolution. The divergence
of τk is generally characterized in terms of an exponent z,

τk =
1

Γ
ξzg(ξk),

and in the quadratic approximation to the L-G model, z = 2 − η = 2 since
η = 0.
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8.1.1 RG for Dynamics

Near the critical point, the long wavelength modes relax very slowly. Just as
there are spatial length scales of all sizes in a near critical system, time scales
of all sizes are involved in the dynamics. So it is natural to seek an extension
of the RG procedure to extract the basic features in dynamics. The RG steps
for the static situation consist of eliminating the modes with k in the range
Λ/q to Λ ( kB group ), introducing a spatial rescaling by the scale factor q
and renormalizing the remaining mode amplitudes with k in the range 0 to
Λ/q (kA group ). In the dynamical situation, as the shorter wavelength modes
are eliminated, their influences on time evolution also get removed. Note
that the relaxation time of the shortest wavelength mode is the basic time
unit in any dynamical description. So, the elimination of shorter wavelength
modes should be accompanied by a rescaling of time at every step of the RG
transformation. The rescaling parameter is related to the spatial scale factor
q and it should reduce to unity when q = 1. The elimination of degrees of
freedom in the dynamical situation would correspond to solving for sk in the
kB group in terms of sk in the kA group and substituting them in the equations
for sk in the kA group. This may also be done by integrating out the kB group
amplitudes from the Fokker-Planck equation for P ({sk}, t) and thus obtaining
a new Fokker-Planck equation with reduced number of independent variables.
The other steps can be represented by the replacements

sk(t) → q1−η/2sk′(t
′),

k′ = qk,

t′ = tq−z.

The last step, which is the additional aspect of dynamic RG, is essentially the
rescaling of the time unit. After these steps, it should be possible to write the
remaining equations of motion as in the original model and thus extract the
transformation equations for the parameter set µ = (a2, c, · · · ,Γ) in the dy-
namical equations. The new parameter set µ′ can be symbolically represented
as µ′ = Rqµ, thus defining the RG transformation Rq. The exponent z has
to be chosen so as to obtain a non-trivial fixed point for the transformation
equations.

The structure of the system during the time evolution can be probed ex-
perimentally by inelastic scattering techniques. The scattering cross-section
Γfi (from a volume V ) corresponding to a wave vector change k and energy
change h̄ω can be expressed as

Γfi ∼ V

∞∫
0

C(k, t) exp(ıωt)dt,
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where C(k, t) is the time dependent correlation function defined as

C(k, t) =< sk(t)s−k(0) > .

The equivalence of the two models characterized by the parameter sets µ and
µ′ yields the functional equation

C(k, t, µ) = q2−ηC(qk, q−zt, µ′).

This is a generalization of the equation for the static correlation function
G(k, µ). Analysis similar to that for G(k, µ) leads to a scaling form

C(k, t, T ) = ξ2−ηgc(ξk, ξ
−zt),

for T close to Tc. The function gc depends only on the scaled variables ξk
and ξ−zt. This form suggests that for a specific value of k, the time scale of
evolution characterized by the relaxation time τk must be of the general form

τk = ξzg(ξk),

which is same as that obtained earlier. Derivation of the RG transformation
equations for the quadratic L-G model can be done easily and one gets z = 2.
The same result is obtained even with the general L-G model for d ≥ 4. The
ε expansion for d < 4 yields

z = 2 + aη +O(ε3),

a = 6 ln(
4

3
)− 1.

Thus one finds that the exponent z is not the same as 2 + η as suggested from
the relaxation time for < sk >.

8.2 Percolation Phenomena

Percolation of any physical quantity ( or property ) involves the establishment
of a geometrical connectedness in a system with random spatial structure.
Fluid flow through a network of pores in a medium, where a certain fraction of
the pores are blocked in a random manner, provides an example of percolation.
For simplicity, one may assume that the bonds in a large 3-D lattice represent
the pores and that each pore (or bond) is open with certain pre-assigned
probability p. Thus, on an average, a fraction p of the pores is open and
the remaining fraction (1 − p) is blocked. If the fluid is allowed to enter the
medium on one of its faces at a constant rate, then in cases when p � 1, it
can not easily pass through the medium to the opposite face. Thus for small
values of p, fluid can not percolate through the medium. Of course for p ≈ 1,
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Table 8.1: Percolation Thresolds

Lattice pc pc
(site) (bond)

2−D Square 0.593 0.500
2−D Triangular 0.500 0.347
3−D Cubic 0.312 0.249
3−D BCC 0.245 0.179
3−D FCC 0.198 0.119

fluid will easily flow through the medium. The experimental observation is
that there is a critical value of p = pc such that for p ≤ pc, the medium
obstructs the fluid flow while for p > pc there is a finite flow rate across the
medium. For unobstructed fluid flow, there should exist a connected path
of open pores across the medium and so it may be concluded that such a
path appears in an abrupt manner at pc. The random network just described
has also been used to model the gelation transition observed in the solutions
of certain organic materials. Here one can imagine the lattice sites as the
molecules of the compound and the bonds between neighbouring sites as the
random links between them. If p is probability of formation of a link, then at
pc, a network of connected molecules indicating the onset of gelation, will exit
in the system.

There is also a formulation of percolation phenomena in terms of site per-
colation models. Imagine that the sites of a lattice are occupied by particles
randomly and independently. If p is the probability that a particular site is
occupied, then for small values of p there are mostly isolated particles and
rarely small clusters of particles in the system. As the value of p is increased,
larger and larger clusters of particles would appear. At a critical value of
p = pc, a cluster spanning the entire domain appears in the system. The
random structure of occupied sites is a good model of a disordered structure
and has been extensively used to study diffusion on disordered lattices. The
percolation threshold ( pc ) values depend on the type and dimension (d) of
the lattice and a small list corresponding to the infinite lattice limit is given in
Table 8.1. All the approximate results are obtained by simulating the perco-
lation model on a computer. The information about the random occupation
of sites ( or bonds ) of a large lattice at a specific value of p are stored in the
computer memory and then the cluster sizes are analyzed at different values
of p. Thus one can determine the value of pc at which a cluster spanning the
entire lattice is obtained for the first time. The results so obtained for various
lattice sizes are then extrapolated to the infinite lattice limit.
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Several physical quantities pertaining to the cluster structure show very
distinct behaviour when p is close to pc. The probability P that an arbitrary
site (or bond) in the lattice belongs to the infinite cluster is one of these
quantities. It is clear that P = 0 for p ≤ pc while it is found that P varies as
a power law for p > pc,

P (p) ≈ (p− pc)β, p ≥ pc.

The exponent β characterizes the way P vanishes as p approaches pc from
above and is analogous to the order parameter exponent for magnetic tran-
sition. The physical properties of a random structure which depend on the
presence of the geometric connectedness are related to P . Thus the elastic
properties of gels or the conductivity in a random network are related to the
probability P . Another useful quantity to characterize percolation behaviour
is the mean cluster size S. For p < pc, clusters are of finite sizes, however,
as an infinite cluster appears at pc, one expects S to diverge as p → pc from
below. The divergence is quantified in terms of an exponent γ as

S(p) ≈ (p− pc)−γ,

and γ is similar to the magnetic susceptibility exponent. The divergence of S
is indicative of the unbounded increase of some typical average linear size of
clusters. This length scale, ξ, usually called the correlation length, behaves as

ξ(p) ≈ |p− pc|−ν ,

as observed in thermal critical phenomena. The total number of clusters M
in the lattice depends on p and the non-analytic part of M is found to vary as

M ′(p) ≈ (p− pc)2−α.

The quantityM ′ is similar to the singular part of free energy density in thermal
systems and its second derivative diverges like specific heat in thermal critical
behaviour. All the exponents introduced are not independent and scaling
hypotheses have been advanced to derive relations among them. Two scaling
laws are

α + β + γ = 2

2− dν = α

where d is the spatial dimension. Some typical values of the exponents are
shown in Table 8.2. The two exponents σ and τ given in the table are intro-
duced to quantify the variation of the number of clusters ns ( per lattice site
) of size s. For large values of s, the scaling form proposed for ns is

ns ≈ s−τ f [(p− pc)sσ],
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Table 8.2: Percolation Model Exponents

Exponent d = 2 d = 3 Bethe
Lattice

β 0.14 0.4 1.0
γ 2.39 1.8 1.0
α −0.66 −0.6 −1.0
ν 1.33 0.9 0.5
σ 0.4 0.45 0.5
τ 2.05 2.2 2.5

where f is a function of the scaled variable (p− pc)sσ . The exponents τ and
σ are related to β and γ as

σ =
1

β + γ

τ = 2 +
β

β + γ

The entries in the last column of the table are values of the exponents for the
Bethe lattice which is constructed as follows. Starting from an arbitrary point,
one draws z bonds. Then at the vertices of each bond, z− 1 bonds are drawn
and this process is repeated again and again. However, the bonds never cross
each other. Thus the Bethe lattice has a tree like structure, each branch breaks
into z− 1 branches. An important simplicity of the Bethe lattice is that there
is one and only one path between any two vertices in the lattice. This feature
makes it possible to solve the percolation problem exactly and pc is (z− 1)−1.
The Bethe lattice is an approximate model of geometrical connectivity in the
percolation problems. It neglects the details of fluctuations in connectivity
and is similar to the mean field models in thermal critical phenomena. An
estimate of the magnitude of fluctuations show that this model is exact for
d ≥ 6.

The similarity between thermal critical phenomena and percolation be-
haviour is very striking. In the former, at a given temperature, a configuration
of ‘particles’ occurs in the system with probability given by the Boltzmann
factor exp(−E/kBT ) where E is the energy of the configuration. In perco-
lation models, the site or a bond of the lattice is occupied in a random way
with probability p. Thus temperature T and p are analogous parameters. The
divergence of the correlation length (or mean linear size of clusters) is common
in both phenomena and for p ≈ pc, clusters of all sizes exist in the system.
The renormalization group idea of progressively incorporating length scales of
all sizes is hence expected to be useful in percolation phenomena also.
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8.2.1 Simple RG Calculations

Some illustrative applications of the real space renormalization group calcu-
lations are discussed below. Just like in thermal critical phenomena, sites (or
bonds) are grouped together to form a cell lattice. Then with a proper defini-
tion for cell occupation, a relation connecting the occupation probabilities p′

and p at the cell and site levels is derived. The transformation equation yields
the percolation threshold and the exponent ν. If the linear size of the cell is
q (in units of the site spacing), the correlation lengths ξ and ξ′ (measured in
appropriate lattice spacing units) of the two models are related as

ξ′(p′) =
1

q
ξ(p).

If the transformation law relating p and p′ is

p′ = R(p),

then its non-trivial fixed point is identified with the percolation threshold pc,
that is

pc = R(pc).

Near the fixed point, the transformation can be linearized as

∆p′ = (
∂R

∂p
)∗∆p = qy∆p,

for the deviations of p and p′ from the fixed point. The same analysis for the
magnetic case yields the functional equation for the correlation length,

ξ(∆p) = qξ(qy∆p).

Its solution for arbitrary q is

ξ(∆p) = |∆p|1/yξ(1),

so that the exponent ν = 1/y. Consider the site percolation problem on a 2-D
triangular lattice shown in Figure 8.1. The sites at the vertices of a triangle
are grouped together to form a cell. The cell lattice is again triangular but
the spacing is

√
3 times larger than the site spacing. So q =

√
3. Now, a cell is

taken to be occupied if there exits a connection between its opposite sides and
otherwise it is defined to be empty. This rule takes the place of the majority
rule in the case of Ising model. For percolation, connectivity of the network is
the important aspect and hence the majority rule is modified in this manner.
Now, note that p3 is the probability that all sites in a cell are occupied and
then a connection across the sides of the cell definitely exists. However, a
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Figure 8.1: Cells in a Triangular Lattice.

connection can also exist if any two sites are occupied and the probability for
the same is 3p2(1− p), the factor 3 being the number of ways of choosing two
occupied sites out of three. If just one site is occupied, there is no connection
between the sides of the cell. Therefore the probability p′ of cell occupation is

p′ = p3 + 3p2(1− p).

The fixed point values of the transformation are p∗ = 0, 1/2 and 1. The first
and last values are trivial fixed points. The non-trivial fixed point value 1/2
coincides with the percolation threshold given in Table 8.1. On linearising the
transformation one gets

∆p′ =
3

2
∆p,

which yields the exponent ν ≈ 1.355 in good agreement with the known result.
Such accurate results are not always obtained for different types of lattices and
dimensions. In a 2-D square lattice, let a cell be formed (see Figure 8.2) by
grouping together 4 sites so that the scale factor is q = 2. Further, define
that a cell is occupied if its left and right sides are connected together. The
probability p′ is then given by

p′ = p4 + 4p3(1− p) + 2p2(1− p)2.

The first term arises if all the four sites are occupied. The second term corre-
sponds to the four ways of choosing three occupied sites and one empty site.
Similarly, the last term is obtained when two sites are occupied and two are
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Figure 8.2: Cells in a Square Lattice.

empty. The non-trivial fixed point value yields pc ≈ 0.62 and ν ≈ 1.602. Thus
the agreement is much less than in the case of triangular lattice. The general
conclusion derived from such calculations is that it is necessary to consider
large cells for obtaining accurate results and so the technique has to be coupled
with computer simulation methods.

8.3 Polymer Conformations

Polymers are long flexible organic molecules in which a specific chemical group,
usually called a monomer, is repeated a large number of times. For example,
in polystyrene, the chemical group consists of the CH2 − CH bond and a
Benzene molecule and is repeated as much as 105 times. The extraction of
the global features of such objects has been one of the impressive successes of
modern statistical physics.

One of the simplest models employed to describe the various conformations
of a polymer chain in a solvent is the self-avoiding random walk (SAW) model.
It is a modified form of the simple random walk model of Brownian motion.
Imagine that the random walk starts at some point in a d-dimensional lattice.
The walker can jump to the nearest neighbour sites with equal probability and
a particular realization of the walk with N steps is taken as a possible polymer
conformation with N units. In the SAW, there is a restriction that the walker
can visit a lattice site only once. This restriction is imposed to model the
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physical fact that a polymer chain can not cross over itself. Imposing the self-
avoiding restriction leads to serious mathematical difficulties in describing the
SAW and many important results on its global properties have been obtained
via computer simulation techniques.

A quantity of primary interest is the number of walks of N steps starting
from an arbitrary origin o and ending at the site i. If this number is denoted
as ΓN(oi), the probability that the walker is at site i after N steps (from o)
can be expressed as

PN(oi) =
ΓN(oi)

ΓtN
,

where

ΓtN =
∑
i

ΓN(oi),

is the total number of possible N step walks starting from the origin o. In the
simple random walk model, the walker can visit any of the z nearest neighbour
sites at each step, and hence

ΓtN = zN ,

where the coordination number z has values 4 and 6 for a simple cubic lattice
in 2 and 3 dimension respectively. Due to the self-avoiding character, this
result is modified for SAW and in the limit of large N one finds that

ΓtN ∼ zN0 N
γ−1,

where the parameter z0 (called the effective coordination number, z0 ≈ 4.7 for
3-D simple cubic lattice) is less than z and γ is a universal exponent depending
only on the spatial dimension. Another important parameter is the number
of N step walks ending at one of the nearest neighbours of the starting point
o. If it is denoted as ΓN(n.n), its asymptotic variation is found to be

ΓN(n.n) ∼ zN0 N
−2+α,

where α is another universal number. The end to end length of a walk can be
written as

RN(oi) = ro1 + r12 + r23 + · · ·+ rN−1 i,

where {rjk} are vectors along the lattice bonds between the sites j and k. The
root mean square value of RN(oi) for large N varies as

R ∼ a0N
ν ,

where a0 is the lattice spacing and ν is yet another exponent. For the simple
random walk, the exponent ν is 1/2 for all values of d. R is similar to the cor-
relation length ξ in thermal critical phenomena and its power law divergence
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Table 8.3: Exponents for SAW

Exponent d = 1 d = 2 d = 3 Random
Walk

γ 1.0 1.33 1.17 1.0
ν 1.0 0.74 0.6 0.5
α 1.0 · · · · · · 0.0

for large N is analogous to the divergence of ξ near the critical temperature
Tc. Some typical values of the exponents are given in Table 8.3. Note that
the mean end to end distance increases faster than that in the case of simple
random walk and this fact is a manifestation of the restriction that any site
can not be visited more than once. Thus there is a tendency for the walk to
move away faster than in the case of the simple walk.

A rather strong connection between the SAW model of polymer conforma-
tions and thermal critical phenomena was brought out by P. G. de Gennes.
He showed that the spin-spin correlation function for the n-vector model in
the limit n→ 0 can be written as

lim
n→0

< sosi >=
∑
N

ΓN(oi)
[ J

kBT

]N
, (8.1)

where ΓN(oi) is the number of N step SAWs from o to i and J/kBT is the
reduced coupling strength of the n-vector model. Even though the n → 0
limit is a pure mathematical device, the above result relates, in some sense,
the magnetic critical behaviour with SAWs. Eq.(8.1) can be rewritten as

lim
n→0

< sosi >∼
∑
N

PN(oi)Nγ−1
[ Jz0

kBT

]N
,

by using the definition of the probability PN(oi) and the asymptotic form of
ΓtN discussed earlier. If the critical temperature Tc is defined as

Tc =
Jz0

kB
,

then for a small deviation ∆T from Tc one gets

Jz0

kBT
≈ 1− ∆T

Tc
≈ exp

[
− ∆T

Tc

]
.

Then the correlation function becomes

lim
n→0

< sosi >∼
∑
N

PN(oi)Nγ−1 exp
[
− ∆T

Tc
N
]
. (8.2)
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Eq.(8.2) shows that N and ∆T are some sort of conjugate variables. The
summation over N may be replaced by an integration and then the probability
PN(oi) can be obtained by a Laplace transform inversion of the correlation
function. With this interpretation, the exponents of SAW can be obtained
from those of the n-vector model in the limit n → 0. This connection also
shows that, for d ≥ 4, the Landau’s theory exponents of critical phenomena (
which are independent of n and d ) are identical to those of SAW. In fact the
exponents for the simple random walk are same as those of Landau’s theory.
The interesting conclusion so obtained is that for d ≥ 4, the universal aspects
are not modified by the restriction imposed in SAW.

8.3.1 Decimation of the Chain

The following analysis, due to de Gennes, is an application of the RG approach
to the problem of chain conformations. A polymer chain is characterized by
the length of the monomer unit and a repulsive interaction between monomers
which prevents them from crossing over. In the SAW model, the lattice spac-
ing a0 and the self-avoiding restriction represent these features. One may
associate a monomer unit with each site visited in the SAW. Then the self
avoiding restriction may be modeled in terms of an excluded volume parame-
ter v0 between two monomers. In the case of two hard sphere particles, v0 is
eight times the particle volume. Now, imagine that every q monomers along
the chain are grouped together to form a coarse description of polymer con-
formations and let (a1, v1) denote the parameter set in that description. The
length unit a1 is the mean end to end distance of q monomers and v1 is the
excluded volume parameter of two coarse units. In the absence of self-avoiding
restriction, it is clear that a1 = a0q

1/2. So an equation relating a1 and a0 may
be written as

a1 = a0q
1/2f1(q, a0, v0),

where the correction factor f1 ≥ 1, arising from the self-avoiding restriction,
must approach unity as v0 → 0. The dependence of f1 on a0 and v0 must
be in terms of the dimensionless parameter u0 = v0/a

d
0 (d=spatial dimension)

since a0 is the basic length unit. Then a1 can be expressed as

a1 = a0q
1/2f(q, u0).

There are a total of q2 monomer pairs between two coarse units and hence
v1 is q2v0 in the case of free monomers. Due to the extended growth of the
chain, all the pairs do not come close enough to experience the excluded
volume restriction and hence v1, which is less than this limiting value, can be
expressed as

v1 = q2v0g(q, u0).
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The correction factor g ≤ 1 is also expressed in terms of u0. This relation can
be rewritten in terms of the dimensionless parameter u1 = v1/a

d
1 as

u1 = q2−d/2u0h(q, u0),

where the factor h = g/fd is less than unity. If the two descriptions are
equivalent, the mean end to end distances R̄0 and R̄1 expressed in terms of a0

and a1 respectively are related as

R̄0(N, u0) =
a1

a0

R̄1(
N

q
, u1).

The factor a1/a0 is just the spatial rescaling parameter and the number of
coarse units is N/q. On repeating the process of coarse graining l times one
gets

R̄0(N, u0) =
al
a0

R̄l(
N

ql
, ul).

As the value of l increases, the number of units in the renormalized chain
reduces. This fact implies that the parameter ul defined by

ul = q2−d/2ul−1h(q, ul−1),

will approach a constant value u∗. Note that it is the parameter u and not v
which approaches a limit for large l. Then the transformation equation for al
reduces to

al = al−1q
1/2f(q, u∗),

and can be expressed as

al = al−1q
ν ,

ν =
1

2
+

ln(f)

ln(q)
.

So R̄0 takes the form

R̄0(N, u0) ∼ qlνR̄l(
N

ql
, u∗).

Now, choosing l such that ql = N one finds that

R0(N, u0) = a0R̄0 ∼ constant N ν ,

which is the observed power law divergence. For d ≥ 4, the recursion relation
shows that ul → u∗ = 0 since both factors q2−d/2 and h are less than unity.
Hence f(q, u∗) = 1 and ν = 1/2 for d ≥ 4. Thus the results of simple random
walk model (valid for d ≥ 4) and Landau’s theory of thermal phase transitions
are similar.
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8.3.2 RG Calculation of ν

The similarities in thermal critical phenomena and polymer conformations
suggest that the universal aspects of the latter in the large N limit is a conse-
quence of the existence of the fundamental length scale R. In fact, in the SAW
model, walks of all sorts of end to end distance exist and thus the problem has
again many length scales. This aspect together with the formal connection
to thermal critical behaviour have prompted the application of RG ideas to
the problem of SAW conformations. Summing over the final end point i in
Eq.(8.2) and using the normalization of the probability PN(oi), one gets

χ(T ) =
1

T

∑
i

lim
n→0

< sosi >∼
1

T

∑
N

Nγ−1 exp(−∆T

Tc
N) ∼ (

∆T

Tc
)−γ,

where the definition of susceptibility χ(T ) in terms of the spatial sum of the
correlation function has been used. The last step in this equation is obtained
by replacing the sum over N by an integral and calculating its dominant con-
tribution. This result shows that the exponent γ in the definition of ΓtN is
analogous to the susceptibility exponent for magnetic case. Therefore, sum-
ming over the possible values of i, Eq.(8.1) can be written as a generating
function for the SAW conformations. That is

G(κ) =
∑
N

κNΓtN ,

where the parameter κ = J/kBT . The divergence of χ(T ) = G(κ)/T at Tc
can then be expressed as

G(κ) ∼ |κ− κc|−γ, (8.3)

where the critical value κc = J/kBTc = z−1
0 , z0 being the effective coordination

number for SAW. From the scaling form of the spatial integral of correlation
function, it is known that

χ(T ) ∼ ξ2−η,

where ξ is the correlation length. Using this result, G(κ) can be expressed in
terms of the mean end to end distance R as

G(κ) ∼ R2−η.

Combining with Eq.(8.3) and using the scaling relation γ = (2−η)ν, one finds

R(κ) ∼ |κ− κc|−ν .

Thus the divergence of R for SAW can also be expressed in terms of the
parameter κ. This parameter, introduced in Eq.(8.3), is similar to the fugacity
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Figure 8.3: Coarse Graining SAW Steps.

appearing in the definition of the grand partition function. κN is a weight
factor for the number of N step walks. One may therefore assign a weight κ
to every step of the walk.

A simple illustration of the use of RG ideas to calculate ν is the following.
A coarse description of SAW is obtained by grouping a certain number of steps
in the walk. In this way, a relation between the fugacity parameters κ′ and κ
in the two descriptions is obtained. Then the non-trivial fixed point κc = z−1

0

and the exponent ν are found in the usual manner. Consider the eight bonds
of the lattice cell shown in Figure 8.3 where each bond has a weight factor κ.
The renormalized bonds with weight factors κ′ are shown on the right. If there
exists a self-avoiding path across the cell (from left to right), the renormalized
bond also is taken to be a SAW step. A similar criterion is adopted for the
vertical direction as well. Further, it is assumed that the SAW steps start
from the left-bottom corner. Due to the symmetry of the problem, it is then
enough to consider the six steps marked in Figure 8.3 to obtain the strength
of κ′. Thus the four step walk (2, 3, 4, 6) yields a contribution κ4 in κ′. Then,
two types of three step walks, (2, 3, 5) and (1, 4, 5), contribute a term 2κ3.
Finally, there is a two step walk (1, 6) and the transformation is

κ′ = κ4 + 2κ2 + κ.

The three fixed points of the transformation are 0, 0.466 · · · and ∞. Taking
κc ≈ 0.446, one gets z0 ≈ 2.146 while the simulation result for 2-D square
lattice is ≈ 2.639. Linearizing the transformation at κc, one finds that the
slope is ≈ 2.639 ≈ 21.4 and hence ν ≈ 0.715 which may be compared with the
estimated value of 0.75. Similar calculations for 3-D simple cubic lattice yield
z0 ≈ 4.68 and ν ≈ 0.588 which are again in good agreement with simulation
results.

8.4 Chaotic Maps

Bifurcation and transition to chaos in nonlinear dynamics is another area of
application of RG ideas. Even simple one dimensional maps, which model
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nonlinear evolution, exhibit certain interesting scaling and universal proper-
ties. A 1-D map is a transformation of a point xn on the real axis to another
point xn+1 and is defined by

xn+1 = f(xn, λ), n = 0, 1, · · · , (8.4)

where f is a nonlinear function and λ is a parameter. Such transformations
occur in numerical algorithms to determine zeros of a given function. They
are also used as simple models of population growth and stabilization. In the
latter case, if a steady state population exists, it is given by the fixed point of
the transformation

x∗ = f(x∗, λ).

The nature of the fixed point depends on the function f . If the magnitude
of the slope, |f ′(x∗)| is less than unity, then starting with any arbitrary point
x0 in the neighbourhood of x∗, the iterates for large n tend to x∗ and it is
said to be a stable fixed point. x∗ is marginally stable if |f ′(x∗)| = 1 and
unstable if |f ′(x∗)| > 1. For definiteness, consider the map (called logistic
map in population dynamics models) defined as

xn+1 = λxn(1− xn), n = 0, 1, · · · .

From a graph of the corresponding f , it is easily concluded that if any iter-
ate lies outside the interval [0,1], then the later iterates asymptotically tend
to −∞. The maximum of f is λ/4 at x̄ = 1/2. Therefore, for non-trivial
dynamics it is enough to consider x in [0,1] and λ in [0,4]. Now, x∗0 = 0 is
a trivial fixed point and it is stable for 0 ≤ λ < 1 since f ′(0) = λ. Thus
if λ is increased continuously from 0, at the value 1, x∗ = 0 looses stability.
However for 1 < λ < 3, there is a non-trivial fixed point x∗1 = 1 − 1/λ since
f ′(x∗1) = 2− λ. For λ = 2, the fixed point x∗1 = 1/2 is said to be super stable
since f ′(1/2) = 0. When λ is increased from 1 to 3, f ′(x∗1) decreases from 1 to
−1. For λ slightly greater than 3, x∗1 becomes unstable. But a 2-point limit
cycle defined by

x∗22 = f(x∗21, λ),

x∗21 = f(x∗22, λ),

becomes stable. In fact x∗2k (k = 1, 2) are the fixed points of the second
functional iterate f2(x) since

x∗21 = f(f(x∗21)) ≡ f2(x∗21),

x∗22 = f(f(x∗22)) ≡ f2(x∗22).

The nth functional iterate fn(x) is defined as

fn(x) = f(f(f · · · (x)).
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For the logistic map, the second iterate is

f2(x) = λ2x(1− x)(1− λx(1− x)).

It has a minimum at x̄ = 1/2 and a maximum on its either sides. The fixed
point equation for f2(x) can be factored as

(λ− 2− λy∗)(λ2y∗2 − 2λy∗ − λ2 + 2λ+ 4) = 0,

where y∗ = 2x∗−1. The root y∗ = 1−2/λ yields x∗ = 1−1/λ and is unstable.
The relevant fixed points are

x∗2k =
1

2
− 1

2λ
{1− (−1)k(λ2 − 2λ− 3)1/2}, k = 1, 2.

The derivatives of f2 at these fixed points are

f ′2(x∗21) = f ′2(x∗22) = f ′(x∗21)f ′(x∗22) = 4 + 2λ− λ2.

Thus f ′2 decreases from 1 to −1 as λ is varied from 3 to 1 +
√

6. It is zero
for λ = 1 +

√
5 and the 2-point limit cycle is super stable. At this point,

x∗21 is at the abscissa of the minimum of f2 and x∗22 is at the abscissa of the
maximum on the right. The break up of the fixed point x∗1 to a 2-point limit
cycle is called a pitchfork bifurcation. When λ is slightly greater than 1 +

√
6,

the 2-point limit cycle becomes unstable but a 4-point limit cycle determined
by the fixed points of f4(x) becomes stable. As λ is increased further, this
general pattern of a 2n-point cycle becoming unstable at Λn and a 2n+1-point
cycle acquiring stability continues. Further there exists a parameter value λn
at which the 2n-point cycle is super stable with the fixed points at the extreme
of f2n(x). The smallest member has the value 1/2 which is the maximum of
f(x) itself. Note that according to the definition, Λ0 = 3, Λ1 = 1+

√
6, λ0 = 2

and λ1 = 1+
√

5. The parameter values Λn accumulate to λ∗ and for λ greater
than λ∗, limit cycles with odd number of periods and aperiodic iterates occur.
Beyond λ∗, the dynamics generated by the map is said to be chaotic. For
the logistic map λ∗ ≈ 3.569943 · · ·. A schematic representation of the period
doubling bifurcation is shown in Figure 8.4.

8.4.1 RG Theory

There are two universal numbers discovered by Feigenbaum in connection with
period doubling bifurcation of a family of 1-D maps. The first is the rate of
bifurcation δ defined as

Λn ∼ λ∞ −
A

δn
,

where A is a constant and n � 1. The parameter λn, at which the 2n-
point cycle is super stable, also converges to λ∞ in the same manner since
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Figure 8.4: Bifurcation Diagram.

it is bracketed by Λn−1 and Λn. The second universal number arises from
the observation that the functional iterates f2n−1(x, λn) are self similar. Note
that at these λ values, one of the fixed points of f2n , say x∗2n1, coincides with
the abscissa x̄ = 1/2 corresponding to the maximum of f(x). The function
f(x, λ1) for x̄ = x∗21 ≤ x ≤ x∗22 and f2(x, λ2) for x∗42 ≤ x ≤ x∗41 = x̄ can be
superposed by properly scaling x and the amplitude. The pairs (x̄, x∗22) and
(x̄, x∗42) form 2-point cycles of f(x, λ1) and f2(x, λ2) respectively. So these
functions in the regions x̄ ≤ x ≤ x∗22 and x∗42 ≤ x ≤ x̄ respectively, are
exactly contained by square boxes, of sides |d1| = |x∗22− x̄| and |d2| = |x∗42− x̄|
shown in Figure 8.5. Further, from the chain rule of differentiation, it follows
that if f(x) has a power law behaviour near x̄, then f2(x) also has the same
behaviour at x̄. Hence the scaled functions d−1

1 f(xd1, λ1) and d−1
2 f2(xd2, λ2)

can be superposed on one another. The rescaling parameters dn, which make
the functions d−1

n f2n−1(xdn, λn) self similar, approach zero for large n and

lim
n→∞

| dn
dn+1

| = α,

where α is a universal number. The universality of δ and α is that they depend
only on the order of maximum z of f(x) near x̄. That is, for all unimodal
functions, f(x) mapping the interval [0,1] on to itself and varying as

f(x) ∼ a0 + az(x− x̄)z, z = 2, 4, · · · ,

near x̄, δ and α depend only on z. For the logistic map (z = 2) Feigenbaum
obtained the values δ ≈ 4.669201 · · · and α ≈ 2.502907 · · ·. It is nice to note
that three steps are involved in obtaining the successive self similar functions.
They are, shifting of λn to λn+1, changing the scale factor dn to dn+1 and
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Figure 8.5: Self Similar Functions.

changing the amplitude d−1
n to d−1

n+1. These steps are analogous to those in
the RG theory of critical behaviour.

Feigenbaum also showed that the limiting function

g∗ = lim
n→∞

(−α)nf2n

(
x/(−α)n, λn+1

)
,

is also universal and depends only on z. In fact there is a hierarchy of universal
functions defined as

gr(x) = lim
n→∞

(−α)nf2n(x/(−α)n, λn+r), r = 0, 1, · · · ,

and g∗(x) is simply g1(x). The definition implies that

gr−1(x) = −αgr(gr(x/α)). (8.5)

This functional recursion, which involves the steps of rescaling x and changing
the amplitude, is analogous to Wilson’s recursion formula for Q(s) discussed
in the Chapter 5. The limiting form of gr,

g(x) = lim
r→∞

gr(x),

is a fixed point of the recursion in Eq.(8.5) and satisfies

g(x) = −αg(g(x/α)). (8.6)

Its solution g(x), with the boundary condition g(0) = 1, also yields α = g(1)−1.
For large values of r, the deviation of gr(x) from g(x),

yr(x) = g(x)− gr(x),
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can be obtained by linearising Eq.(8.5) around g(x). The result is the linear
functional equation

yr−1(x) = −αyr(g(x/α))− αg′(g(x/α))yr(x/α).

The substitution

yr(x) = µ−rφ(x),

yields an eigenvalue equation

Ωφ(x) = −αφ(g(x/α))− αg′(g(x/α))φ(x/α) = µφ(x),

In addition to the spectrum |µ| < 1, the operator Ω is found to have a unique
positive eigenvalue µ = δ where δ is the bifurcation rate. Thus Eq.(8.6)
describes all the universal aspects of period doubling bifurcation of 1-D maps.

The analogy between period doubling bifurcation and critical behaviour
can be extended further. If N(Λn) denotes the length of the limit cycle at λ
slightly less than Λn, then

N(Λn) = 2N(Λn−1). (8.7)

This relation is similar to that connecting the correlation lengths of two equiv-
alent models of critical behaviour. The factor 2 is like the spatial rescaling
factor and Λn and Λn−1 are similar to the parameters characterizing the two
models. As Λn → λ∗, N(Λn) diverges as 2n and this behaviour is analogous
to the divergence of the correlation length as the critical point is approached.
Eq.(8.7) implies the existence of a recursion relation of the type

Λn = R(Λn−1),

between the bifurcation points Λn and Λn−1. Then the accumulation point λ∗

is the fixed point defined by

λ∗ = R(λ∗).

For small deviations from λ∗, the linearised transformation is

∆Λn = R′∗∆Λn−1 ≡ 2−1/τ∆Λn−1,

where τ = − ln(2)/ ln(R′∗). Comparison with the definition of the bifurcation
rate δ shows that R′∗ = δ−1 and hence

τ =
ln(2)

ln(δ)
.

For Λn close to λ∗,

N(Λn) = 2N(λ∗ + ∆Λn−1).
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Repeated application of this equation l times yields

N(Λn) = 2lN(λ∗ + ∆Λn−l)

= 2lN(λ∗ + 2l/τ∆Λn),

where the definition of τ is used in the last step. Since l is arbitrary, it can
be chosen as 2l/τ ≈ (∆Λn)−1 for Λn close to λ∗. Then one gets

N(Λn) ∼ (∆Λn)−τ ,

and τ is similar to the correlation length exponent.

The transformation relating Λn and Λn−1 can be obtained in the following
way. The derivative of f2n(x,Λn) at x∗2n1 is −1. So an equation relating Λn and
Λn+1 can be obtained by equating the slopes of f2n(x,Λn) and f2n+1(x,Λn+1) at
the respective fixed points. Taking n = 0, the slope of f(x,Λ0) at x∗1 = 1−Λ−1

0

is

f ′(x∗,Λ0) = 2− Λ0.

The slope of f2(x,Λ1) at the fixed points x∗2k can be computed as

f ′2(x∗2k,Λ1) = f ′(x∗21,Λ1)f ′(x∗22,Λ1) = 4 + 2Λ1 − Λ2
1.

Hence the transformation is

4 + 2Λ1 − Λ2
1 = 2− Λ0,

with a fixed point value λ∗ ≈ 3.5615. The derivative at λ∗ is R′∗ ≈ 0.1952 and
hence δ ≈ 5.1224. These results are first approximations to the numerically
computed values quoted earlier. In fact, using the derivatives of f2(x,Λ1)
and f4(x,Λ2) one gets λ∗ ≈ 3.5702 and δ ≈ 4.6142 which are much better
approximations.

8.5 More Applications

The RG theory has played a major role in providing a clear understanding of
two important problems which are introduced in this section. As the details of
the calculations are somewhat lengthy, only the basic physics and usefulness
of RG concepts are discussed here.

Kondo Problem

The first application is to the Kondo problem which describes the interac-
tion of a single magnetic impurity in a metal with the conduction electrons.
The magnetic impurity has an intrinsic spin and so it can interact with the
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conduction electrons via the exchange effect. For higher temperatures such
that kBT � |J |, the coupling energy, one would expect the magnetic sus-
ceptibility, χ, due to the impurity to vary as 1/T according to Curie’s law.
Then the pertinent question is whether this behaviour is continued all the
way down to very low temperatures or not. The experimental observation
is that for anti-ferromagnetic interaction (J < 0), χ is nearly constant for
T < Tk , a characteristic temperature called Kondo temperature. It is also
found that the electrical resistivity increases below Tk in contrast to the usual
decrease observed in metals. For ferromagnetic interaction (J > 0), χ is found
to follow Curie’s law and there is no anomalous increase in resistance at low
temperatures.

These observations may be understood qualitatively in the following man-
ner. With anti-ferromagnetic interaction, a conduction electron and the impu-
rity can form a singlet (total spin zero) ground state. Then for kBT less than
the ground state energy E0, the electron and the impurity behaves together
as a single entity with no intrinsic magnetic moment and so χ does not show
any temperature dependence. The Kondo temperature may, thus, be roughly
defined as kBT ≈ E0. On the other hand, if the interaction is ferromagnetic,
the ground state of the electron-impurity pair is a triplet state (total spin 1)
and then the combined system behaves according to Curie’s law. The many
body aspect of the problem becomes evident if one considers the scattering
events caused by the exchange effect leading to a flipping of the electron spin.
If the impurity spin is down before the scattering, a spin up electron can be
scattered to the spin down state via the anti-ferromagnetic interaction there
by making the impurity spin up. But now, another spin up electron can not
be scattered since the interaction is ineffective. Thus the conduction electrons
can not be treated independently and so the problem has the many body
character. For low temperatures, conduction electrons with energies in the
neighbourhood of the Fermi surface alone are involved in the process, how-
ever, there is a continuum of energy states and thus multiple energy scales are
involved. Perturbation theory calculations show that the scattering amplitude
varies as Jρ+ (Jρ)2 ln(Ec/KBT ) + · · · where ρ is the density of electron states
and Ec is a cut-off energy. For low temperatures, the second term diverges
logarithmically, and the perturbation theory becomes invalid. A possible way
to tackle the problem is to group together electrons according to their en-
ergy and account for their interaction in a recursive manner by considering
one group at a time. A quantitative analysis of the problem was lacking till
Wilson’s work using the RG approach which clearly established that the mag-
netic susceptibility due to the impurity is nearly constant below the Kondo
temperature.
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Turbulence

The second application which needs to be mentioned is to the description of
turbulence in fluid flow. During the 1880s, O. Reynolds showed that the flow of
an incompressible fluid, like water, through a pipe becomes turbulent for flow
velocities greater than a critical value which depends on the type of the fluid
and the pipe diameter. For velocities lower than the critical value, fluid flow is
of the laminar type. The turbulent nature of the flow indicates the presence of
random velocity fields (in space, time and direction) over a mean macroscopic
flow velocity. The parameter characterizing the transition from laminar to
turbulent flow is called the Reynolds number defined as R = vl/ν where v
is the macroscopic flow speed, l is the typical size of the pipe and ν is the
fluid viscosity. Reynolds’ experiments showed that the minimum value of R
required to induce turbulent flow is around 2000. The simplest of all turbulent
flows is that in a region of space away from boundaries as occurring in the
atmosphere or the ocean. The problem becomes still simpler if the average
flow properties are assumed to be spatially uniform, isotropic and stationary.
In this limiting case, the two point correlation function of the velocity field
components, < uα(r1, t1)uβ(r2, t2) >, depends only on |r1 − r2| and t1 − t2,
and the mean square turbulent energy Ē =< u2(r, t) > is independent of r
and t. A concept of central importance in the physics of turbulence is the
energy (or wavenumber) spectrum E(k) which is the Fourier transform of the
correlation function < u(0, t) · u(r, t) >. The turbulent energy can then be
expressed as Ē =

∫
E(k)dk. Thus E(k)dk represents the energy distributed

in the random velocity fields with wavenumbers in the shell between k and
k+ dk. E(k) is analogous to the Fourier transform of the correlation function
of spin density.

The Navier-Stokes equation (NSE) which describes the space-time evolu-
tion of the velocity field in an incompressible, Newtonian fluid is intrinsically
nonlinear. The nonlinear terms arise out of the convective derivative in the
momentum conservation equation, and also from the elimination of pressure
gradients using the continuity equation. In addition, the NSE has a dissipative
term of diffusive type resulting out of the Newtonian form for the stress ten-
sor. The NSE is more clearly analyzed when expressed in terms of the Fourier
components of the velocity field. This also makes the calculation of the en-
ergy spectrum more easier. The Fourier representation of the NSE shows that
the velocity component with wavevector k1 is nonlinerly driven by the sum
of interactions from other components with wavevectors k2 and k3 such that
k1 = k2 + k3. This nonlinear coupling between the modes leads to transfer
of energy from the modes with small k to those with larger k where viscous
dissipation is predominant. Viscous damping is rapid when velocity gradients
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are maximum and hence it occurs at small length scales (or large k) of the
order of molecular mean free path. In fact the linear decay rate of a mode
with wavenumber k is found to be νk2. Thus turbulent flow is characterized
by a large range of wavenumbers, the smallest and largest limits are decided
by the macroscopic size of the flow and Reynolds number respectively. Non-
linear coupling of modes destroys the dependence of energy distribution in the
higher k region on the manner in which turbulence is generated. This aspect
makes the energy spectrum for large k to have a universal form. Formulation
of these ideas led Kolmogorove (1941) to propose that the energy spectrum
varies as E(k) ∼ k−5/3f(k/kd) where kd is the maximum wavenumber present
in the flow pattern and f is a universal function. Theoretical justification of
this scaling form and the calculation of f has been one of the major aims
of turbulence physics. The RG ideas for dynamical critical phenomena have
been successfully employed for achieving this goal. The Fourier components
of the velocity field are first divided into two groups, one for 0 < k ≤ kd/q
and the other for kd/q < k ≤ kd. Then the second group is eliminated from
the NSE and the variables are rescaled as in all RG approaches. The viscosity
constant, which is a parameter present in the NSE, is generalized to have a k
dependence and redefined at every step of the RG transformation. The isola-
tion of a fixed point viscosity function and the emergence of scaling behaviour
has been established in this manner.

8.6 Concluding Remarks

The applications of RG theory discussed in this chapter are not at all exhaus-
tive. The principal aim has been to introduce problems in diverse fields of
physics which have been successfully analyzed with the RG formalism. In fact
there are more applications to systems which have (i) frozen random prop-
erties, (ii) long range interactions, (iii) anisotropic coupling constants, (iv)
quantum effects, etc. Yet another area is the field of particle diffusion on ran-
dom and fractal models of disorder. Discussion of all these topics is beyond
the scope of this introductory monograph. So it is concluded here with a few
remarks on the origins of the RG approach in the field theories of elementary
particles.

The technique of renormalization was developed in the 1950s to circum-
vent the problem of ultraviolet divergences in relativistic field theories (RFT)
such as quantum electrodynamics. It is associated with great names such as
Dyson, Feynman, Schwinger, Gell-mann, Weinberg and several others. The
framework of RFTs (in four dimensional space-time ) is similar to that of sta-
tistical mechanics in four (d = 4) dimension. The formulation of these theories
is a generalization of Feynman’s path integral approach to quantum mechan-
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ics which begins with a definition of the probability amplitude K(x1, t1|x2, t2)
as a functional integral involving the action functional A[x]. In field theories,
the action is defined as the space-time integral of a Lagrangian density. The
central differences between the formulations of field theories and statistical me-
chanics are, (i) the partition function is replaced by a generating functional
and (ii) the Boltzmann factor exp(−H) is changed to exp(ıA). A generating
function for calculating the averages and correlation functions of spin density
was introduced in the section on perturbation theory in Chapter 2. The La-
grangian density of interacting fields contain parameters like particle mass m
and coupling constant u describing the particle-field interaction. These pa-
rameters are similar to a2 and a4 in the Landau-Ginzburg hamiltonian. The
Greens functions (or propagators), which yield the scattering amplitudes, are
quantities of primary interest in RFTs. For instance, the two point Greens
function G2(p1,p2) provides the amplitude for scattering of a state with mo-
mentum p1 to p2. Similarly, there are higher order Greens functions G4, G6,
etc. These are analogous to the correlation functions in statistical mechanics,
and can be obtained from the generating functional. In RFTs, there is no
cut-off momentum similar to the cut-off wavevector Λ in statistical models.
When the Greens functions are calculated using a perturbation expansion in
the coupling constant u, the successive approximations are found to diverge in
the high momentum (or wavevector) limit Λ. (Such divergences are evident in
the perturbation expansion for the partition function discussed in Chapter 2.)
If a cut-off momentum Λ is introduced, one finds that G2 diverges as Λ2 (when
d = 4) while G4 varies as ln(Λ). The renormalization program was invented to
remove these higher momentum or ultraviolet divergences. One prescription
is to define renormalized parameters mr and ur in terms of values of G2 and
G4 when

∑
i pi = 0. Then all the Greens functions are expressed in terms

of mr, ur and Λ. If it is possible to choose these parameters such that the
Greens functions are finite in the limit Λ→∞ keeping mr and ur fixed, then
the theory is said to be renormalizable. The parameters mr and ur are then
taken as the observed values of these quantities.

The RG in this formalism arose from the observation that the momentum
chosen to define the parameters mr and ur is arbitrary. So one may define
them when the net momentum is not zero but has some value p0. Then it
turns out that a particular theory can be expressed in terms of a family of
renormalized parameters which satisfy equations analogous to the transforma-
tion equations for the parameters in H. This is the origin of the RG concept.
As Wilson remarks, this idea of renormalization does not have any physical
basis. It simply expresses the arbitrariness in the definition of the renormal-
ized parameters. Further, it is based entirely on the perturbative approach
for calculations. The problem in critical phenomena is the infrared divergence
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of correlation functions near the critical point. There is always a physically
meaningful cut-off wavevector Λ, so the ultraviolet divergences do not exist.
Wilson’s generalization of the RG approach involved transforming all the pa-
rameters in the hamiltonian and so the hamiltonian itself. The new approach,
thus, can be seen as a theory for generating newer models and the method
of generation is the physical process of coarse graining the system which has
to be chosen depending on the problem at hand. The new models generated
turn out to be ‘simpler’ for extracting the common features observed in a
class of phenomena. Thus the RG approach is much more than a technique
for calculations in phase transition theory and has the potential to unify the
physics underlying many complex systems. The applications outlined in this
chapter provide only a flavor of this potential.
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About the book

In nature there are several phenomena like thermal phase transitions or per-

colation processes which involve a multitude of length scales and / or time

scales. For describing such phenomena, Kenneth Wilson, around 1970, put

forward the renormalization group theory. The basic ideas and techniques

of the theory are elaborated in this monograph using some simple models of

ferromagnetic critical behaviour. Brief outlines of applications to some of the

related areas are also given. This monograph would provide a self contained

introduction to beginners.
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